37728

Исследование линейных электрических цепей постоянного тока

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

1 ток в цепи и падения напряжения на участках цепи определяются по закону Ома: Разветвленная цепь с одним источником э. Сущность метода наложения основывается на принципе суперпозиции заключающегося в том что ток в отдельной ветви линейной разветвленной цепи равен алгебраической сумме...

Русский

2013-09-25

309.11 KB

48 чел.

Лабораторная работа №1

Исследование линейных электрических цепей постоянного тока.

    Цель работы: экспериментально проверить: выполнение законов Ома и Кирхгофа для цепей постоянного тока; методы расчета разветвленных цепей постоянного тока - метод наложения и метод двух узлов.

В неразветвленных цепях постоянного тока (рис.1.1) ток в цепи и падения напряжения на участках цепи определяются по закону Ома:

                                                

                                        

                                       

 Разветвленная цепь с одним источником э.д.с. (рис.1.2) путем последовательных преобразований приводится к схеме рис. 1.1.

                                             

                                   

При определении токов, разветвляющихся в две параллельные ветви, удобно использовать формулу "разброса":

                                          

                                          

В разветвленных цепях с несколькими э.д.с. (рис.1.3) по любому замкнутому контуру должен выполнятся второй закон Киргофа:

         для внешнего контура:

                                         I1R1- I2R2 = E1-E2 ;

         для  внутренних контуров:

                                         I1R1+ I3R3 = E1 ;

                                         I2R2+ I3R3 = E2 .

 Метод наложения . Сущность метода наложения основывается на принципе суперпозиции, заключающегося в том, что ток в отдельной ветви линейной разветвленной цепи равен алгебраической сумме токов в данной ветви, обусловленных действием каждой из э.д.с. в отдельности, причем остальные источники напряжения закорачиваются, а источники тока размыкаются. Таким образом, метод наложения позволяет заменить расчет сложной разветвленной цепи с несколькими э.д.с. соответствующим количеством расчетов цепей с одной э.д.с.

 Метод двух узлов. Очень часто встречаются электрические цепи, состоящие из нескольких параллельно соединенных ветвей, т.е содержащие два узла. Разность потенциалов между двумя узлами U30 определяется по формуле:

                                                 

где Ei, Ii берутся со знаком " + ", если они направлены от узла 0 к узлу 1, и со знаком " - ", если наоборот.

Ток в каждой ветви определяется по закону Ома для участка цепи:

                                                 

         

       

                                 

Схема № 1

Расчёт цепи:

I=E1/(R1+R3)=10/(51+30)=0,123(A)

U30=I*R3=0,123*30=3,69(B)

U31=I*R1=0,123*51=6,27(B)

E1=U30+U31=9,96(B)

E1

U13

U30

I

Tеоретические значения

9,96B

6,27B

3,69B

0,123A

Практические значения

9,64 B

6,02 B

6,64B

0,118A

Схема № 2

Расчёт цепи:

R30=(R2*R3)/(R2+R3)=11*30/41=8,05(Om)

I1=E1/(R1+R30)=10/(51+8,05)=0,169(A)

U30=I1*R30=0,169*8,05=1,36(B)

I2=U30/R2=0,123(A)

I3=U30/R3=1,36/30=0,045(A)

U31= I1*R1=*R0,169*51=8,619(B)

E1=U30+U31=1,36+8,619=9,979(B)(2-ой закон Кирхгофа)

I1= I2+ I3(1-ый закон Кирхгофа)

E1

U13

U30

I1

I2

I3

Tеоретические значения

9,979

8,619

1,36

0,169

0,123

0,045

Практические значения

9,65

8,42

 1,42

0,162

0,125

0,045

Схема № 3

Расчёт цепи:

R13=(R1*R3)/(R1+R3)=(51*30)/81=18,89(Om)

Rоб=R13+R2=29,89(Om)

I2=E2/ Rоб=5/29,89=0,167(A)

U2=0,167*11=1,837(B)

U30=I2*R13=0,167*18,89=3,15(B)

I1= U30/R1=3,15/51=0,06(A)

I3=U30/R3=3,15/30=0,105(A)

E2= U2+ U30=4,987(2-ой закон Кирхгофа)

E2

I1

I2

I3

Tеоретические значения

4,987

0,06

0,167

0.105

Практические значения

4,87

0,063

0,153

0,097

Схема № 4

Расчёт цепи:

Методом контурных токов определяем значения токов в каждой ветви:

I22=

I22=

(10-81*I11)*41+900*I11=150

410-3321*I11+900*I11=150

-2421*I11=150-410

I11==0,107(A)

I22==0,043(A)

I3=I11+I22=0,15(A)

I1=I11=0,107(A)

I2=I22=0,044(A)

U13=I1*R3=0,107*51=5,48(B)

U30=I3*R3=0,15*30=4,51(B)

U43=I2*R2=0,044*11=0,484(B)

E1=U13+U30=5,48+4,51=9,99(B)

E2=U30+U43=4,51+0,484=4,994(B)

E1

E2

U13

U30

U43

I1

I2

I3

Tеоретические значения

9,99

4,994

5,48

4,51

0,484

0,107

0,044

0,15

Практические значения

9,96

4,93

5,78

4,45

0,43

0,107

0,038

0,142


 

А также другие работы, которые могут Вас заинтересовать

69303. Створення і завершення процесів і потоків 50.5 KB
  Створення процесів Базові принципи створення процесів Процеси можуть створюватися ядром системи під час її ініціалізації. Таке створення процесів однак є винятком а не правилом. Найчастіше процеси створюються під час виконання інших процесів.
69304. Керування процесами у Windows XP 98.5 KB
  Поняття процесу й потоку у Windows XP чітко розмежовані. Процеси в даній системі визначають «поле діяльності» для потоків, які виконуються в їхньому адресному просторі. Серед ресурсів, з якими процес може працювати прямо, відсутній процесор - він доступний тільки потокам цього процесу.
69305. Загальні принципи планування процесів та потоків 47.5 KB
  Можливість паралельного виконання потоків залежить від кількості доступних процесорів. Якщо процесор один, паралельне виконання неможливе принципово (у кожен момент часу може виконуватися тільки один потік).
69306. Види міжпроцесової взаємодії 33 KB
  Для потоків різних процесів питання забезпечення синхронізації теж є актуальними, але вони в більшості випадків не ґрунтуються на понятті спільно використовуваних даних (такі дані за замовчуванням для процесів відсутні).
69307. Базові механізми міжпроцесової взаємодії 67 KB
  Технології передавання повідомлень У цьому розділі розглянемо особливості організації взаємодії між потоками різних процесів. Основи передавання повідомлень Усі методи взаємодії які було розглянуто дотепер ґрунтуються на читанні й записуванні...
69308. Основи технології віртуальної пам’яті 75.5 KB
  Віртуальна пам’ять — це технологія, в якій вводиться рівень додаткових перетворень між адресами пам’яті, використовуваних процесом, і адресами фізичної пам’яті комп’ютера. Такі перетворення мають забезпечувати захист пам’яті та відсутність прив’язання процесу до адрес фізичної пам’яті.
69309. Сегментація пам’яті. Сторінкова організація пам’яті 101 KB
  У кожного сегмента є ім’я і довжина (для зручності реалізації поряд з іменами використовують номери). Логічна адреса складається з номера сегмента і зсуву всередині сегмента; з такими адресами працює прикладна програма. Компілятори часто створюють окремі сегменти для різних даних програми
69310. Поняття файла і файлової системи 34 KB
  Логічний визначає відображення файлової системи призначене для прикладних програм і користувачів фізичний особливості розташування структур даних системи на диску й алгоритми які використовують під час доступу до інформації.
69311. Організація інформації у файловій системі 61.5 KB
  У сучасних ОС файли у файловій системі не прийнято зберігати одним невпорядкованим списком (зазначимо, що можливі винятки, наприклад, для вбудованих систем). Десятки гігабайтів даних, що зберігаються зараз на дисках, вимагають упорядкування, файли, в яких перебувають ці дані...