37731

Определение средней длинны свободного пробега и эффективного диаметра молекул воздуха

Лабораторная работа

Физика

Краткое теоретическое обоснование методики измерений Основное уравнение динамики твёрдого тела вращающегося вокруг неподвижной оси имеет вид: 1 Где момент импульса вращающегося тела; момент его инерции относительно оси вращения; угловая скорость вращения и момент силы....

Русский

2013-09-25

137.5 KB

5 чел.

Министерство образования Российской Федерации

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Наименование факультета - ЕНМФ

Наименование выпускающей кафедры – Кафедра водородной энергетики и плазменных технологий

Наименование учебной дисциплины - Физика

Лабораторная работа № 1-05

Наименование работы – Определение средней длинны свободного пробега и эффективного диаметра молекул воздуха.

Исполнитель:

Студент, группы 13А61 (________) Королева Я.Ю.

                                                                                                                                                                          подпись

(_______)

                                                                                                                                    дата

Руководитель, профессор  (_______) Крючков Ю.Ю.

                                                      Должность, ученая степень, звание        подпись

(_______)

                                                                                                                                       дата

Томск –2007

Цель работы: изучение динамики вращательного движения твёрдого тела, проверка справедливости основного уравнения динамики вращательного движения твёрдого тела вокруг неподвижной оси, проверка теоремы Гюйгенса-Штейнера.

Приборы и принадлежности: крестообразный маятник Обербека, грузы известной массы, секундомер, технические весы, разновески, метровая линейка.

Краткое теоретическое обоснование методики измерений

Основное уравнение динамики твёрдого тела, вращающегося вокруг неподвижной оси, имеет вид:

                                                                                                                               (1)

Где - момент импульса вращающегося тела; - момент его инерции относительно оси вращения; - угловая скорость вращения и  – момент силы. Дифференцируя последнее равенство, получим

                                                        (2)

Если вращение осуществляется вокруг неподвижной оси и если момент инерции остаётся постоянным, то уравнение (2) примет вид

                      или                                      (3)

Здесь  и  – момент  инерции и момент силы относительно неподвижной оси z. Угловое ускорение связано с линейным ускорением точек, расположенных на расстоянии r от оси вращения, уравнением

                                                                                                                                   (4)

Линейное ускорение связано с перемещением  и временем перемещения , при условии, что начальная скорость перемещения равна нулю

                                                                                 (5)

Теорема Гюйгенса-Штейнера позволяет определить момент инерции относительно любой другой оси, если она параллельна оси, проходящей через центр масс

                                                       (6)

Где - момент инерции относительно оси, проходящей через центр масс; m- масса тел;- расстояние между осями.

МЕТОДИКА ПРОВЕРКИ ОСНОВНОГО ЗАКОНА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Возможны 2 способа проверки:

а) установить линейную зависимость

  при J=const;

б) установить линейную зависимость

при M=const;

a) Первый способ.

- радиус шкива, на который намотана нить;- ускорение падающего груза с платформой; - момент силы трения:

                                                    (7)

В соответствии с теоремой Гюйгенса-Штейнера момент инерции крестовины с надетыми на спицы грузами , равен

Так как  J>> mr2, то последнее равенство примет вид

                                                (8)

Из этой зависимости следует, что отношение  должно быть линейным.

Минимальное значение  определит момент силы трения

                                                       (9)

б) Второй способ.

Подставим в уравнение (8) значение момента инерции системы. Если проводить эксперимент так, чтобы , то можно полагать  незначительными и тогда

                                              (10)

Следовательно, в случае справедливости основного закона динамики вращательного движения вокруг неподвижной оси, а также теоремы Гюйгенса-Штейнера, зависимость должна быть линейной.

Таблица 1

Зависимость углового ускорения от момента силы.

1

0,01

5,76

5,75

5,81

5,77

0,68

0,25

0,01

2

0,02

4,82

4,71

4,84

4,79

0,68

0,25

0,01

3

0,03

4,50

4,50

4,48

4,49

0,68

0,5

0,02

4

0,04

4,19

3,93

4,11

4,08

0,68

0,5

0,02

5

0,05

3,74

3,72

3,77

3,74

0,68

0,5

0,02

Таблица 2

Зависимость углового ускорения от момента инерции.

Примеч.

0,23

0,2

6,85

6,98

7,05

6,96

33,0625

0,78

0,195402

50,1529

0,21

0,2

6,37

6,41

6,46

6,41

27,5625

0,78

0,212058

46,2137

0,19

0,2

5,5

5,54

5,54

5,52

22,5625

0,78

0,24608

39,8245

0,17

0,2

5,04

5,13

5,07

5,08

18,0625

0,78

0,267717

36,6059

Рассчитаем погрешности ускорения, исходя из таблицы 2.

Таблица 3

Вычисление погрешностей ускорения.

0,23031

0,01633

0,04539

0,30875

0,312

                                                        Рис. 1.

Рис. 2.

Вывод: движение твёрдого тела, подчиняющегося уравнению динамики вращательного движения. Теорема Гюйгенса-Штейнера справедлива в пределах ошибок измерений.


 

А также другие работы, которые могут Вас заинтересовать

21705. Технология личностного ориентирования в географии 103.5 KB
  Содержание личностно-ориентированного образования, его средства и методы структурируются так, что позволяют ученику проявить избирательность к предметному материалу, его виду и форме, в этих целях разрабатываются индивидуальные программы обучения, которые моделируют исследовательское мышление.
21706. Методы экспертного оценивания 136 KB
  5] Анализ компетентности экспертов по взаимооценкам [0.6] Анализ компетентности экспертов по оценкам объектов [0. Типичные ситуации группового выбора: распределение конкурсной комиссией поощрений; обсуждение и согласование нескольких альтернативных законопроектов; ранжирование по перспективности внедрения образцов новых промышленных изделий производимое группой экспертов. Например для 3х объектов предпочтение одного из экспертов или он может количественно выразить интенсивность ; ; .
21707. Разделы модуля «Базовые понятия. Методы извлечения знаний» 368 KB
  Методы извлечения знаний [1] История и этапы развития искусственного интеллекта [2] Подходы к созданию систем искусственного интеллекта [3] Искусственный интеллект в России [4] Направления развития искусственного интеллекта [5] Основные определения [6] Методы извлечения знаний [7] Классификация методов извлечения знаний [8] Пассивные методы [9] Наблюдения [10] Анализ протоколов мыслей вслух [11] Лекции [12] Активные методы [13] Активные индивидуальные методы [14] Анкетирование [15] Интервью [16] Свободный диалог [17] Активные групповые методы...
21708. Модуль Жизненный цикл интеллектуальной системы 147.5 KB
  2] Этап 2: Разработка прототипной системы [1.4] Этап 4: Оценка системы [1.5] Этап 5: Стыковка системы [1.
21709. Модуль Методы представления знаний: Нечеткая логика 192 KB
  Математический аппарат Характеристикой нечеткого множества выступает функция принадлежности Membership Function. Обозначим через MFcx степень принадлежности к нечеткому множеству C представляющей собой обобщение понятия характеристической функции обычного множества. Значение MFcx=0 означает отсутствие принадлежности к множеству 1 полную принадлежность. Так чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 080.
21711. Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей 181.5 KB
  Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей Для решения широкого класса задач эксплуатации и проектирования с учётом фактора надёжности необходимо определение вероятностей возникновения возможных последствий от нарушения электроснабжения потребителей которые сводятся к следующим: вероятность возникновения катастрофических и аварийных ситуаций исследование которых необходимо для нормирования надёжности электроснабжения; вероятность возникновения отдельных составляющих ущерба их величина и...
21712. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. КОНТРОЛЬНЫЕ ИСПЫТАНИЯ 2.49 MB
  Показатели надежности экспериментальными методами могут быть получены по результатам либо испытаний специальных или совмещенных либо наблюдением за функционированием объекта в условиях эксплуатации. Методы испытаний организуются специально с целью определения показателей надежности объем их обычно заранее планируется условия функционирования объектов устанавливаются исходя из требований оценки конкретных показателей. Показатели надежности таких объектов оцениваются в основном либо по результатам совмещенных испытаний при которых...
21713. СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ, АНАЛИЗА И КОНТРОЛЯ НАДЕЖНОСТИ 358.5 KB
  Сбор информации об отказе элементов технических систем В общем комплексе мероприятий по обеспечению надёжности любого изделия сбор статистической информации об отказах и оценка показателей надёжности в условиях эксплуатации являются последним заключительным этапом. При этом появляется возможность оценить реальные значения показателей надежности и следовательно оценить эффективность мероприятий по обеспечению надёжности на всех этапах проектирование производство испытания монтаж эксплуатация. Поэтому особое значение приобретает вопрос...