37752

Исследование интерференционного светофильтра

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Зеркала полупрозрачны так что часть света отражается от них R коэффициент отражения часть поглощается А коэффициент поглощения а часть проходит Т коэффициент пропускания. Основные характеристики ИФ: mx длина волны в максимального пропускания Tmx максимальный коэффициент пропускания Tmin минимальный коэффициент пропускания 05 спектральная полуширина ширина полосы на уровне 05Tmx 2 угловая ширина светового пучка К контраст отношение максимального и минимального коэффициетов пропускания Т R А = 1 для...

Русский

2013-09-25

402 KB

34 чел.

Санкт-Петербургский Государственный Университет Информационных Технологий, Механики и Оптики

Кафедра: физической оптики и спектроскопии

Лабораторная работа №10

Исследование интерференционного светофильтра

Студентка: Шатилова К.В.

Группа: 2222

Преподаватель: Красавцев В. М.


Цель работы:
научиться определять основные характеристики интерференционного светофильтра и практически применять его в работе.

Теоретическая часть:

Принцип работы интерферометра Фабри-Перо.

S1, S2 – стеклянные пластины, несущие зеркала

n-показатель преломления промежуточного слоя

h-расстояние между пластинами

j-угол падения излучения

L - линза

Э – экран

Действие интерференционного светофильтра Фабри-Перо основано на многолучевой интерференции.

Воздушный (в л/р: диэлектрик MgF2) промежуток толщиной h ограничен стеклянными пластинами (S1, S2), несущими зеркала (в л/р: высокоотражающие металлические покрытия Ag). Зеркала полупрозрачны, так что часть света отражается от них (R – коэффициент отражения), часть поглощается (А – коэффициент поглощения), а часть проходит (Т – коэффициент пропускания).

В интерферометре Фабри-Перо за эталоном (системой параллельных пластин) располагается линза, которая строит изображение источника на поверхности экрана. Если на пластину эталона падает свет под всевозможными углами к ее плоскости, то на выходе создаются кольца равного наклона.

Основные характеристики ИФ:

max – длина волны в максимального пропускания

Tmax – максимальный коэффициент пропускания

Tmin – минимальный коэффициент пропускания

0,5 – спектральная полуширина – ширина полосы на уровне 0,5Tmax

2 – угловая ширина светового пучка

К – контраст – отношение максимального и минимального коэффициетов пропускания

Т + R + А = 1 – для зеркал    

R – коэффициент отражения, А – коэффициент поглощения, Т – коэффициент пропускания.

Для слоя между пластинами, примем пропускание Т1. Коэффициент пропускания ИФ:

Т = I/I0 = T2T1/((1-T1R)2 + 4T1Rsin2(/2)) I = I0T2T1/((1-T1R)2 + 4T1Rsin2(/2))

где  I и I0 – интенсивность прошедшего и падающего излучения.

       – разность фаз между интерферируемыми лучами

Основные параметры ИФ:

Максимальное пропускание:

При /2 = m, m = 1, 2, 3 …  sin2(/2) = 0

Tmax = T2T1/(1-T1R)2

Пусть T1 = 1 и Т + R + А = 1 1 – R = A + T Tmax = T2/(A + T)2 = 1/(1 + A/T) 2

Минимальное пропускание:

/2 = (2m+1) 

Tmax = T2/(1+R)2


Положение максимумов:

max = 2hn cosj2/(m - /),

где 2hn cosj2 = – разность хода; h – толщина; n – показатель преломления               промежуточного слоя; j2 –угол преломления

     m – порядок интерференционного максимума

      – скачек фазы при отражении

Ширина полосы пропускания:

0,5 – ширина полосы на уровне 0,5Tmax 

Полуширина 0,5 – функция коэффициента отражения:

0,5 = 2max /mF, где F = 2R/(1 - R) – фактор резкости

Схема установки:

1 – стабилизатор напряжения

2 – трансформатор

3 – источник сплошного спектра (лампа К-10)

4 – конденсор

5 – поляризатор

6 – интерференционный светофильтр

7 – угломерное устройство

8 – конденсор

9 – монохроматор

10 – фотоприемник

11 – регистрирующее устройство


Таблицы измерений и расчеты:

Коэффициент пропускания ИФ рассчитывается по формуле: T = n / n0 

Где n –прошедший поток излучения

                   n0 – падающий поток излучения

Таблица №1 (j=0о)   Таблица №2 (j=20о)    Таблица №3 (j=45о)

(нм)

n0

n

T

(нм)

n0

n

T

(нм)

n0

n

T

460

500

5

0,010

460

500

6

0,012

460

500

23

0,046

470

600

6

0,010

480

500

8

0,016

470

600

42

0,089

480

600

6

0,010

500

600

12

0,020

480

600

50

0,083

490

600

7

0,012

522

600

25

0,042

486

600

58

0,097

500

600

8

0,013

543

600

86

0,143

490

600

60

0,100

510

600

10

0,017

560

600

78

0,130

496

600

54

0,090

522

600

10

0,017

580

600

48

0,080

500

600

54

0,090

531

600

10

0,017

600

600

10

0,017

522

600

47

0,078

539

600

12

0,020

620

600

5

0,008

543

600

8

0,013

551

600

14

0,023

640

600

3

0,005

560

600

6

0,010

560

600

80

0,133

660

600

3

0,005

576

600

3

0,005

572

600

96

0,160

603

600

3

0,005

576

600

98

0,163

590

600

71

0,118

603

600

36

0,060

611

600

13

0,022

620

600

8

0,013

630

600

6

0,010

640

600

4

0,007

650

600

3

0,005

660

600

3

0,005

Используя результаты опытов, находим максимальный и минимальный коэффициенты пропускания ИФ и (при помощи графика) величину спектральной полуширины 0,5

  1.  при j=0о : Tmax = 0,163; Tmin=0,005; max= 576 нм; 0,5= 40 нм
  2.  при j=20о : Тmax = 0,143; Тmin=0,005; max= 543 нм; 0,5= 56 нм
  3.  при j=45о : Тmax = 0,100; Тmin=0,005; max= 490 нм; 0,5= 62 нм

Расчет погрешности: для j=0о

Т = n/n + n0/ n0 + 2

n = n0 = 5 делений; 2 = 7 %

Тmax = 5/98 + 5/600 + 0,07 = 0,051 + 0,008 + 0,07 = 0,129 = 13%


Вывод:
В ходе лабораторной работы исследовали основные характеристики интерференционного светофильтра. По результатам измерений и расчетов были построены графики зависимости коэффициентов пропускания от длины волны при различных углах падения света на светофильтр.

Длина волны максимального пропускания задается формулой:

max =2hn cosj2/(m - /), где j2 –угол преломления, который увеличивается с увеличением угла падения излучения, с увеличением угла его косинус уменьшается, а значит и длина волны должна уменьшаться.

При помощи графиков можно пронаблюдать смещение максимумов: при повороте ИФ на 20о, max  смещается на 33 нм; при повороте на 45о – на 86 нм. Это подтверждает зависимость спектропропускания фильтра от  угла падения излучения: с увеличением угла падения (относительно нормали),  длина волны максимального пропускания действительно уменьшается, а ширина полосы пропускания на уровне 0,5Tmax увеличивается.


 

А также другие работы, которые могут Вас заинтересовать

17694. Фазовий синхронізм у параметричних явищах 36.72 KB
  Фазовий синхронізм у параметричних явищах. Нелінійний доданок до поляризації середовища в нульовому наближені:перший доданок не залежить від часу так зване оптичне детектування. Другий доданок гармонічно змінюється з часом. З ним повязана генерація в нелінійному сер...
17695. Фізіологічні властивості ока 20.29 KB
  Фізичні та фізіологічні властивості зору. Гострота зору. Навпроти зіниці в сітківці знаходиться так звана жовта пляма в середині якої центральна ямка. Щільність зорових клітин паличок і колбочок в цьому місці найбільшатому тут найвища гострота зору. Акомодація
17696. Формула Планка 22.79 KB
  Формула Планка. Виводячи формулу для спектральної густини енергії рівноважного випромінювання Планк висунув гіпотезу про те що випромінення й поглинання світла речовиною відбувається не неперевно а кінцевими порціями які називаються квантами світла або енергії. ...
17697. Формули енергетичної світності Стефана-Больцмана і зміщення Віна 73.39 KB
  Формули енергетичної світності СтефанаБольцмана і зміщення Віна. Закон СтефанаБольцмана: Повна потужність теплового випромінювання зростає пропорційно четвертому ступеню абсолютної температури тіла. Енергетичною світністю R називається відношення потоку випр
17698. Формули Френеля 41.19 KB
  Формули Френеля Фомули Френеля визначають амплітуди й інтенсивності заломленої й відбитої хвилі при проходженні світла через плоску границю розділу двох середовищ із різними показниками заломлення. Формули Френеля справделиві в тому випадку коли границя розділу дв...
17699. Хвильове рівняння для металів 21.52 KB
  Хвильове рівняння для металів З рівн Максвела: та рівнянь: діелектр проникність електрична провідність хвильове рівняння = бо = Нехай вектор рівняння Гельмгольца для монохроматичної хвилі. Введемо
17700. Часова та просторова когерентність 72.96 KB
  Часова та просторова когерентність Для інтерференції хвиль необхідною умовою є їх когерентність: однакові частоти однакові поляризації лінійні постійна різниця фаз. Розрізняють два види інтерференції часову та просторову. Часова когерентність. Якщо τ час спос...
17701. Шкала електромагнітних хвиль 139.3 KB
  Шкала електромагнітних хвиль Радіохвилями називають електромагнітні хвилі довжина яких у вакуумі більша за. Оптичним випромінюванням світлом називають електромагнітні хвилі довжини яких у вакуумі лежать у діапазоні від до. До оптичного випромінювання від
17702. ДОСЛІДЖЕННЯ РОБОТИ БАЗОВОЇ СХЕМИ ДТЛ 339.5 KB
  Лабораторна робота №3 ДОСЛІДЖЕННЯ РОБОТИ БАЗОВОЇ СХЕМИ ДТЛ Мета роботи: Дослідження роботи базової схеми ДТЛ. 1. Теоретичні відомості. 1.1 Базова схема ДТЛ. Призначення елементів. Базова схема діоднотранзисторної логіки зображена на мал.41. мал. ...