37809

ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

Лабораторная работа

Информатика, кибернетика и программирование

4 Формула Симпсона Формула Симпсона записывается так: . Погрешность формулы Симпсона прямо пропорциональна в четвертой степени. На практике как и в случае метода трапеций расчеты ведут на сгущающихся сетках и оценку погрешности формулы Симпсона осуществляют по формуле 5. Критерием завершения процесса вычисления определенного интеграла с заданной точностью методом Симпсона на сгущающихся сетках служит условие .

Русский

2013-09-25

248 KB

9 чел.

Лабораторная работа № 5

ВЫЧИСЛЕНИЕ  ОПРЕДЕЛЕННЫХ  ИНТЕГРАЛОВ

ЦЕЛЬ РАБОТЫ: изучить и программно реализовать на языке высокого уровня широко применяемые на практике численные методы вычисления одномерных и кратных определенных интегралов, исследовать их на тестовых задачах.

Элементы теории

При решении задач радиофизики и электроники численное интегрирование применяется всякий раз, когда первообразная слишком сложна либо вообще не выражается через элементарные функции, а также в случае, когда подинтегральная функция задана таблично.

Методы численного интегрирования подразделяются на детерминированные и статистические. Детерминированные методы делятся на методы с равномерным и оптимальным распределением узлов интегрирования. Формулы численного интегрирования одномерных интегралов называются квадратурными, кратных – кубатурными.

Квадратурные формулы в общем виде записываются так:

 

где  – фиксированные узлы отрезка  , – постоянные коэффициенты, – погрешность квадратурной формулы. Строятся квадратурные формулы посредством интегрирования на отрезке  интерполяционной функции , которая аппроксимирует подинтегральную функцию  на всем отрезке  или на его отдельных частях. Широко используемые на практике формулы Ньютона – Котеса, являющиеся предметом исследования  данной лабораторной работы, основываются на интерполяции Лагранжа.

Формула трапеций

Формула трапеций имеет следующий вид:

. (5.1)

Она базируется на двух положениях: интервал интегрирования

покрывается равномерной сеткой , с шагом , подинтегральная функция на интервалах , заменяется линейной интерполянтой Лагранжа.

Погрешность формулы трапеций

, (5.2)

пропорциональна . Квадратичная зависимость погрешности интегрирования от шага сетки позволяет выбором шага сетки обеспечивать требуемую точность.

Вычисление определенного интеграла по формуле (5.1) в условиях ошибок округления сопровождается также  вычислительной ошибкой:

,

которая обратно пропорциональна , где – среднее по всем узлам сетки значение подинтегральной функции,  – ошибка округления на одной операции, которая не превосходит величины , здесь – число десятичных разрядов, отведенных под мантиссу. Именно ошибка округления ограничивает при уменьшении шага сетки достижимую точность вычисления определенного интеграла.

Использование для оценки погрешности формулы (5.2) вызывает определенные трудности вследствие необходимости вычисления . Поэтому на практике привлекают прием вычисления интеграла на сгущающихся сетках с шагом  и , где  и формулу Рунге для оценки главной составляющей погрешности:

, (5.3)

где  – порядок погрешности метода (степень в формуле погрешности). В случае правила трапеций , а значит  для  или  для . Критерием завершения процесса вычисления определенного интеграла с заданной точностью  методом трапеций на сгущающихся сетках служит условие

. (5.4)

Формула Симпсона

Формула Симпсона записывается так:

. (5.5)

При ее построении также используется равномерная сетка , однако число интервалов разбиения теперь обязательно должно быть четным, что и подчеркивает запись . Подинтегральная функция  на интервалах содержа-щих три узла сетки, заменяется интерполяционным полиномом Лагранжа второго порядка.

Погрешность формулы Симпсона

прямо пропорциональна  в четвертой степени.

На практике, как и в случае метода трапеций, расчеты ведут на сгущающихся сетках и оценку погрешности формулы Симпсона осуществляют по формуле (5.3), в которой . Критерием завершения процесса вычисления определенного интеграла с заданной точностью  методом Симпсона на сгущающихся сетках служит условие

. (5.6)

Кубатурная формула Симпсона

Вычисление двойных интегралов

в прямоугольной области можно также вести по формуле Симпсона, которая в этом случае принимает такой вид:

где  обозначает  .  

Если S – криволинейная область интегрирования, то для применения формулы Симпсона область S  заключают в прямоугольник    и пользуются вспомогательной функцией

Тогда

и для вычисления последнего интеграла привлекают метод Симпсона.

Задание

  1.  Разработать, программно реализовать и исследовать на задачах, предложенных преподавателем (см. табл. 5.1), алгоритмы интегрирования функций одной переменной методами трапеций, Симпсона на сгущающихся сетках с критерием завершения вычислительного процесса в виде (5.4) и (5.6) для ; двух переменных – методом Симпсона на заданной преподавателем сетке.

Содержание электронного  отчета

1 Алгоритмы.

  1.  Тексты программ.
  2.  Задачи, результаты их решения.

Задачи

Таблица 5.1

Подинтегральная функция

либо

Интервал

Интервал

1

[0.8; 1.762]

2

[1.3; 2.621]

3

[0.6; 1.724]

4

[3.0; 4.254]

Продолжение табл. 5.1

Подинтегральная функция

либо

Интервал

Интервал

5

[0; 1.234]

6

[0; 1.047]

7

[1.2; 2.471]

8

[1.0; 2.835]

9

[1.0; 2.631]

10

[2.0; 3.104]

11

[0; 1.075]

12

[0; 4.0]

13

[0; π/2]

14

[0; π/4]

15

[0; 1.0]

16

[3.0; 29.0]

17

[0; ln5]

18

[1.0; 4.0]

19

[0; π]

20

[0; π/2]

21

[-1.0; 1.0)

22

[-1.0; 1.0)

23

[0; 1.0]

24

[0; 1.0]

25

[0; 1.0]

26

[0; 1.0]

Окончание табл. 5.1

Подинтегральная функция

либо

Интервал

Интервал

27

[0; 1.0]

28

[0; 1.0]

29

[0; 4.0]

[1.0; 2.0]

30

[3.0; 4.0]

[1.0; 2.0]

31

[0; 2.0]

[0; 1.0]

32

[-1.0; 1.0]

[-1.0; 1.0]

33

[0; π/2]

[0; π/4]

34

[0; 1.0]

[1.0; 2.0]

35

[0; 2.0]

[0.5; 1.5]

ЛИТЕРАТУРА

1. Мулярчик С. Г.  Численные методы. Мн., 2001.

2. Вержбицкий В. М. Численные методы. М., 2000.

37


 

А также другие работы, которые могут Вас заинтересовать

48644. Расчет структуры полей диалектрического шара в вакууме 338.5 KB
  Цель работы – расчет структуры полей диалектрического шара в вакууме, а также в волноводе для приведенных в задании параметров. Метод исследования – метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей.
48645. Створення поліграфічного комплексу 2.76 MB
  До цього слід додати ще такі фактори як зменшення трудомісткості монтажу і демонтажу друкарських форм; регулювання суміщення форм з пульта дистанційного керування; застосування автоматизованих систем миття фарбових апаратів і циліндрів а також систеи сканування форм які дають змогу видавати інформацію про потребу у фарбі лдя програмування балансу фарби та води систем автоматичного регулювання зволожування та ін. Зенефельдером в 1796 відтвореного зображення за допомогою спеціальної фарби наносилося на камінь. Нанесення шару лаку і фарби....
48646. Расчет структуры электромагнитных полей 508 KB
  Цель работы – расчет структуры полей внутри и вне цилиндра, а также в волноводе для приведенных в задании геометрических и электрических параметров
48647. Расчет структуры электромагнитных полей. Общее задание 210 KB
  Решение проводится в цилиндрической системе координат связанных с центром основания цилиндра где r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48648. Расчет структуры электромагнитных полей 575 KB
  Метод исследования – метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей
48649. Расчет структуры электромагнитных полей 209.5 KB
  Параметры задачи Бесконечный проводящий цилиндр в магнитной среде R=8см=008м H0=20 і=5102 е=8 Координаты точки M: r=7см=007м =90 Решение Решение проводится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 в методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48650. Расчет структуры осесимметричных стационарных электромагнитных полей 203 KB
  Решение производится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных методом Фурьев соответствии с которым решение будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты: 1.4 Этим самым решение уравнения 1.
48651. ПСИХОЛОГІЧНІ ВАЖЕЛІ ЗАБЕЗПЕЧЕННЯ БЕЗПЕКИ ЛЮДИНИ. МОДЕЛІ ФОРМУВАННЯ ЗДОРОВ’Я 278 KB
  Фактично люди мають дві нервові системи: центральну і вегетативну. Центральна нервова система керує відносинами людини із зовнішнім світом. Вона включає: спинний мозок, великі півкулі головного мозку, які зв’язані з проміжним мозком, середній мозок, задній мозок, довгастий мозок, мозочок. Вегетативна нервова система керує діяльністю внутрішніх органів.
48652. Расчет структуры электромагнитных полей 780 KB
  Задача настоящей работы – теоретическое исследование электромагнитного поля, основывающееся на классических представлениях о нём, и численное нахождение его характеристик.