37809

ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

Лабораторная работа

Информатика, кибернетика и программирование

4 Формула Симпсона Формула Симпсона записывается так: . Погрешность формулы Симпсона прямо пропорциональна в четвертой степени. На практике как и в случае метода трапеций расчеты ведут на сгущающихся сетках и оценку погрешности формулы Симпсона осуществляют по формуле 5. Критерием завершения процесса вычисления определенного интеграла с заданной точностью методом Симпсона на сгущающихся сетках служит условие .

Русский

2013-09-25

248 KB

7 чел.

Лабораторная работа № 5

ВЫЧИСЛЕНИЕ  ОПРЕДЕЛЕННЫХ  ИНТЕГРАЛОВ

ЦЕЛЬ РАБОТЫ: изучить и программно реализовать на языке высокого уровня широко применяемые на практике численные методы вычисления одномерных и кратных определенных интегралов, исследовать их на тестовых задачах.

Элементы теории

При решении задач радиофизики и электроники численное интегрирование применяется всякий раз, когда первообразная слишком сложна либо вообще не выражается через элементарные функции, а также в случае, когда подинтегральная функция задана таблично.

Методы численного интегрирования подразделяются на детерминированные и статистические. Детерминированные методы делятся на методы с равномерным и оптимальным распределением узлов интегрирования. Формулы численного интегрирования одномерных интегралов называются квадратурными, кратных – кубатурными.

Квадратурные формулы в общем виде записываются так:

 

где  – фиксированные узлы отрезка  , – постоянные коэффициенты, – погрешность квадратурной формулы. Строятся квадратурные формулы посредством интегрирования на отрезке  интерполяционной функции , которая аппроксимирует подинтегральную функцию  на всем отрезке  или на его отдельных частях. Широко используемые на практике формулы Ньютона – Котеса, являющиеся предметом исследования  данной лабораторной работы, основываются на интерполяции Лагранжа.

Формула трапеций

Формула трапеций имеет следующий вид:

. (5.1)

Она базируется на двух положениях: интервал интегрирования

покрывается равномерной сеткой , с шагом , подинтегральная функция на интервалах , заменяется линейной интерполянтой Лагранжа.

Погрешность формулы трапеций

, (5.2)

пропорциональна . Квадратичная зависимость погрешности интегрирования от шага сетки позволяет выбором шага сетки обеспечивать требуемую точность.

Вычисление определенного интеграла по формуле (5.1) в условиях ошибок округления сопровождается также  вычислительной ошибкой:

,

которая обратно пропорциональна , где – среднее по всем узлам сетки значение подинтегральной функции,  – ошибка округления на одной операции, которая не превосходит величины , здесь – число десятичных разрядов, отведенных под мантиссу. Именно ошибка округления ограничивает при уменьшении шага сетки достижимую точность вычисления определенного интеграла.

Использование для оценки погрешности формулы (5.2) вызывает определенные трудности вследствие необходимости вычисления . Поэтому на практике привлекают прием вычисления интеграла на сгущающихся сетках с шагом  и , где  и формулу Рунге для оценки главной составляющей погрешности:

, (5.3)

где  – порядок погрешности метода (степень в формуле погрешности). В случае правила трапеций , а значит  для  или  для . Критерием завершения процесса вычисления определенного интеграла с заданной точностью  методом трапеций на сгущающихся сетках служит условие

. (5.4)

Формула Симпсона

Формула Симпсона записывается так:

. (5.5)

При ее построении также используется равномерная сетка , однако число интервалов разбиения теперь обязательно должно быть четным, что и подчеркивает запись . Подинтегральная функция  на интервалах содержа-щих три узла сетки, заменяется интерполяционным полиномом Лагранжа второго порядка.

Погрешность формулы Симпсона

прямо пропорциональна  в четвертой степени.

На практике, как и в случае метода трапеций, расчеты ведут на сгущающихся сетках и оценку погрешности формулы Симпсона осуществляют по формуле (5.3), в которой . Критерием завершения процесса вычисления определенного интеграла с заданной точностью  методом Симпсона на сгущающихся сетках служит условие

. (5.6)

Кубатурная формула Симпсона

Вычисление двойных интегралов

в прямоугольной области можно также вести по формуле Симпсона, которая в этом случае принимает такой вид:

где  обозначает  .  

Если S – криволинейная область интегрирования, то для применения формулы Симпсона область S  заключают в прямоугольник    и пользуются вспомогательной функцией

Тогда

и для вычисления последнего интеграла привлекают метод Симпсона.

Задание

  1.  Разработать, программно реализовать и исследовать на задачах, предложенных преподавателем (см. табл. 5.1), алгоритмы интегрирования функций одной переменной методами трапеций, Симпсона на сгущающихся сетках с критерием завершения вычислительного процесса в виде (5.4) и (5.6) для ; двух переменных – методом Симпсона на заданной преподавателем сетке.

Содержание электронного  отчета

1 Алгоритмы.

  1.  Тексты программ.
  2.  Задачи, результаты их решения.

Задачи

Таблица 5.1

Подинтегральная функция

либо

Интервал

Интервал

1

[0.8; 1.762]

2

[1.3; 2.621]

3

[0.6; 1.724]

4

[3.0; 4.254]

Продолжение табл. 5.1

Подинтегральная функция

либо

Интервал

Интервал

5

[0; 1.234]

6

[0; 1.047]

7

[1.2; 2.471]

8

[1.0; 2.835]

9

[1.0; 2.631]

10

[2.0; 3.104]

11

[0; 1.075]

12

[0; 4.0]

13

[0; π/2]

14

[0; π/4]

15

[0; 1.0]

16

[3.0; 29.0]

17

[0; ln5]

18

[1.0; 4.0]

19

[0; π]

20

[0; π/2]

21

[-1.0; 1.0)

22

[-1.0; 1.0)

23

[0; 1.0]

24

[0; 1.0]

25

[0; 1.0]

26

[0; 1.0]

Окончание табл. 5.1

Подинтегральная функция

либо

Интервал

Интервал

27

[0; 1.0]

28

[0; 1.0]

29

[0; 4.0]

[1.0; 2.0]

30

[3.0; 4.0]

[1.0; 2.0]

31

[0; 2.0]

[0; 1.0]

32

[-1.0; 1.0]

[-1.0; 1.0]

33

[0; π/2]

[0; π/4]

34

[0; 1.0]

[1.0; 2.0]

35

[0; 2.0]

[0.5; 1.5]

ЛИТЕРАТУРА

1. Мулярчик С. Г.  Численные методы. Мн., 2001.

2. Вержбицкий В. М. Численные методы. М., 2000.

37


 

А также другие работы, которые могут Вас заинтересовать

5022. Види АРП приймальних пристроїв РЛС. Робота АРП із зворотним звязком 26.98 KB
  Усилители с автоматической регулировкой усиления (АРУ). Области применения АРУ. Мощность отраженного радиолокационного сигнала принимаемого от отражающего объекта, изменяется прямопропорционально четвертой степени дальности или удвоенного в...
5023. Современные представления происхождения Вселенной, теория Большого взрыва 93 KB
  Проблемы зарождения и существования Вселенной занимали самого древнего человека. Небо, которое было доступно его обозрению, было для него очень интересно. Недаром астрономия считается одной из самых древних наук о природе. Не потерял интере...
5024. Экологические проблемы развития автомобильного транспорта 993.5 KB
  Транспортно-дорожный комплекс является мощным источником загрязнения природной среды. Из 35 млн.т вредных выбросов 89% приходится на выбросы автомобильного транспорта и предприятий дорожно-строительного комплекса. Существенна роль транспорт...
5025. Аттестация государственных служащих 188 KB
  Каждый государственный и муниципальный служащий в течение своей жизни не раз столкнется с аттестацией, порой тревожным и психологически мучительным процессом, поэтому необходимо знать всю структуру аттестации и быть готовым к ней, быть во в...
5026. Ограниченность экономических ресурсов и благ в современном мире 134.5 KB
  Вопрос ограниченности ресурсов и благ в современном мире является одним из самых актуальных. Известно, что запасы многих природных ресурсов уже находятся в дефиците, а то, что некоторые сохранились в достаточно больших количествах...
5027. Анализ и оценка финансовых результатов деятельности коммерческой организации на примере предприятия ООО СВС 5.37 MB
  В современных экономических условиях деятельность каждого хозяйствующего субъекта является предметом внимания обширного круга участников рыночных отношений (организаций и лиц), заинтересованных в результатах его функционирования. На основе ...
5028. Агрегатное состояние веществ 34.5 KB
  Агрегатное состояние веществ. Агрегатные Состояния вещества (от лат. Aggrego –присоединяю, связываю), состояния одного и того же вещества, переходы между которыми сопровождаются скачкообразным изменением его свободной энергии, энтропии, плотнос...
5029. Основы технологий пищевых продуктов из сырья растительного происхождения 812.5 KB
  Изложены общие сведения о пище и питании, а также характеристика растительного сырья для производства пищевых продуктов. Приведены основы технологий производства хлебопекарных дрожжей, этилового спирта, водок и ликероводочных изделий, виноградных ви...