37832

Решение систем линейных алгебраических уравнений методом Гаусса с выбором главного элемента

Лабораторная работа

Математика и математический анализ

Метод Гаусса К необходимости решения систем линейных алгебраических уравнений СЛАУ приводят многие прикладные задачи физики радиофизики электроники других областей науки и техники. Из прямых методов популярным у вычислителей является метод Гаусса исключения переменных с выбором главного максимального по модулю элемента в столбце.1 Процесс ее решения методом Гаусса делится на два этапа называемых соответственно прямым и обратным ходом.

Русский

2013-09-25

207.5 KB

98 чел.

Лабораторная работа № 1

РЕШЕНИЕ  систем  линейных

алгебраичЕских  уравнений  МЕТОДОМ

ГАУССА  С  ВЫБОРОМ  ГЛАВНОГО  ЭЛЕМЕНТА

ЦЕЛЬ РАБОТЫ: изучить и программно реализовать на языке высокого уровня метод Гаусса с выбором главного элемента по столбцу, исследовать его точность и эффективность на тестовых задачах.

Метод Гаусса

К необходимости решения систем линейных алгебраических уравнений (СЛАУ) приводят многие прикладные задачи физики, радиофизики, электроники, других областей науки и техники. По этой причине разработке и исследованию методов решения СЛАУ уделяется повышенное внимание.

Для решения СЛАУ используются как прямые методы, позволяющие получить в случае отсутствия ошибок округления точное решение за конечное, заранее известное количество арифметических операций, так и итерационные методы. Итерационные методы используются для решения СЛАУ большого порядка, а также для уточнения решения, полученного прямыми методами.

Из прямых методов популярным у вычислителей является метод Гаусса (исключения переменных) с выбором главного (максимального по модулю) элемента в столбце. Поиск главного элемента позволяет, с одной стороны, ограничить рост коэффициентов на каждом шаге исключения и, следовательно, уменьшить влияние ошибок округления на точность решения, с другой, обеспечить для невырожденных систем выполнение условия  (отсутствие аварийных остановов вследствие деления на нуль).

Пусть задана система линейных алгебраических уравнений

 (1.1)

Процесс ее решения методом Гаусса делится на два этапа, называемых соответственно прямым и обратным ходом.

На первом этапе система (1.1) путем последовательного исключе-

ния переменных  сводится к эквивалентной системе с верхней треугольной матрицей коэффициентов:

 (1.2)

Исключение переменной  (k-й шаг прямого хода Гаусса) включает вычисление k-й строки треугольной матрицы:

 (1.3)

k-го свободного члена:

 (1.4)

преобразование уравнений системы (1.1) с номерами :

 (1.5)

В соотношениях (1.5) переменной внутреннего цикла является j, переменной внешнего цикла – i. Полное число шагов, за которое выполняется прямой ход Гаусса, равно n, т. е. расчеты по формулам (1.3) ÷ (1.5) выполняются для .

На втором этапе (обратный ход Гаусса) решают систему (1.2):

, (1.6)

последовательно определяя неизвестные

Описание алгоритма

Алгоритм решения СЛАУ методом Гаусса с выбором главного элемента по столбцу выглядит следующим образом:

Алгоритм 1.1

1. Присвоить компонентам массива перестановок  IOR(k)  исходные значения:

принять, после этого, .

2. Найти индекс , для которого

Это можно сделать так:

2.1. Положить AKK=0;

2.2. Вычислить в цикле ():

2.2.1. ;

2.2.2. Если , то перейти к п. 2.2.1;

2.2.3. .

3. Поменять местами значения  и , если :

и выбрать ведущий элемент

.

Если , то выйти из программы с информацией об ошибке ().

4. Исключить переменную  с помощью соотношений (1.3) ÷ (1.5) (прямой ход Гаусса):

4.1.

4.2.

4.3. Вычислить в цикле по i ():

4.3.1.

4.3.2.

4.3.3. .

5. Увеличить значение  на единицу и вернуться к п. 2, если  , иначе завершить прямой ход, вычислив

Если , то выйти из программы с сообщением .

6. Выполнить в цикле для  (обратный ход Гаусса):

.

Сделаем комментарии к описанному алгоритму. Выбор ведущего элемента  предполагает перестановку строк системы (1.1). Программно это нетрудно сделать, переставляя соответствующие строки матрицы коэффициентов и соответствующие компоненты вектора свободных членов. Подобную операцию можно и не выполнять, если ввести вспомогательный одномерный массив перестановок .  Первоначально в пункте 1 алгоритма его элементам ,  присваиваются исходные значения . Обратиться к элементу  матрицы коэффициентов с привлечением массива перестановок, значит использовать элемент , так как первоначально . Если , то обращение к элементам , приводит к использованию коэффициентов го уравнения системы. Следовательно, вместо перестановок строк матрицы коэффициентов достаточно поменять местами  и . Такой подход реализован в приведенном алгоритме при выборе ведущего элемента.

Выбор ведущего элемента по столбцу обеспечивает выполнение условия , если матрица решаемой системы не вырождена. Сообщение  в пунктах 3 и 5 алгоритма свидетельствует о вырожденности матрицы.

Задание

  1.  Написать, отладить и исследовать на задачах (табл. 1.1), предложенных преподавателем, программу численного решения систем линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу.
  2.  Вычислить для каждой задачи вектор невязки  (для этого до начала выполнения прямого хода Гаусса матрицу  и вектор  необходимо сохранить)

и  оценить его норму

.

Содержание электронного  отчета

  1.  Текст программы.
  2.  Задачи, результаты их решения, вычисленные значения нормы вектора невязки.

Таблица 1.1

Матрица коэффициентов A

Вектор b

1

6

13

-17

13

29

-38

-17

-38

50

2

4

-5

2

1

-1

0

2

-2

1

1

2

1

1

1

2

3

2.30

3.50

1.70

5.70

-2.70

2.30

-0.80

5.30

-1.80

-6.49

19.20

-5.09

4

2.75

3.28

1.15

1.78

0.71

2.70

1.11

1.15

3.58

15.71

43.78

37.11

5

8.64

-6.39

4.21

1.71

4.25

7.92

5.42

1.84

-3.41

10.21

 3.41

12.29

6

21.547

10.223

51.218

-95.510

-91.065

12.264

-96.121

 -7.343

86.457

-49.930

-12.465

 60.812

7

2.60

3.00

-6.00

-4.50

3.00

3.50

-2.00

4.30

3.00

19.07

 3.21

-18.25

8

2.31

4.21

3.49

31.49

22.42

 4.85

1.52

3.85

28.72

40.95

30.24

42.81

9

2.50

-3.50

-6.50

-3.00

2.60

-3.50

4.60

1.50

7.30

-1.05

-14.46

-17.73

10

0.14

1.07

0.64

0.24

-0.83

0.43

-0.84

0.56

-0.38

1.11

0.48

-0.83

11

2.74

1.12

0.81

-1.18

0.83

1.27

3.17

-2.16

0.76

2.18

-1.15

3.23

12

1.80

3.10

4.51

2.50

2.30

-1.80

4.60

-1.20

3.60

2.20

3.60

-1.70

Продолжение табл. 1.1

Матрица коэффициентов A

Вектор b

13

2.0

0.4

0.3

1.0

1.0

0.5

-1.0

0.2

-0.1

4.0

1.0

2.5

1.0

-8.5

5.2

-1.0

1.0

2.0

3.0

-1.0

14

2.21

8.30

3.92

3.77

3.65

2.62

8.45

7.21

1.69

4.10

7.78

8.04

6.99

1.90

2.46

2.28

-8.35

-10.65

12.21

15.45

15

3.81

2.25

5.31

9.39

0.25

1.32

6.28

2.45

1.28

4.58

0.98

3.35

0.75

0.49

1.04

2.28

4.21

6.47

2.38

10.48

16

7.90

8.50

4.30

3.20

5.60

-4.80

4.20

-1.40

5.70

0.80

-3.20

-8.90

-7.20

3.50

9.30

3.30

6.68

9.95

8.60

1.00

17

0.1582

0.1968

0.2368

1.1161

1.1675

0.2071

0.2471

0.1254

0.1768

1.2168

0.2568

0.1397

0.1871

0.2271

1.2671

0.1490

1.6471

1.7471

1.8471

1.5471

18

4.11

-1.26

3.18

1.29

-1.26

2.00

-1.97

3.81

-5.99

4.00

0.49

-1.56

1.29

0.00

-1.00

0.00

-0.75

1.08

3.38

0.87

19

1

1

2

3

1

2

0

1

1

-2

1

2

1

3

0

2

10

11

5

19

20

2

1

2

1

3

1

1

1

11

5

3

3

5

2

2

4

2

1

-3

-3

9


 

А также другие работы, которые могут Вас заинтересовать

68285. ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ФІНІШНОЇ ОБРОБКИ ВНУТРІШНІХ ЦИЛІНДРИЧНИХ ПОВЕРХОНЬ ДЕТАЛЕЙ РЕДУКТОРІВ 725.5 KB
  Створення сучасних високонадійних машин і систем вимагає застосування ефективних технологій механічної обробки деталей які забезпечують необхідну точність якість і продуктивність їх обробки.
68286. ПРОФІЛАКТИКА ПРОТЕЗНИХ СТОМАТИТІВ У ХВОРИХ НА ЦУКРОВИЙ ДІАБЕТ ПРИ КОРИСТУВАННІ ЗНІМНИМИ АКРИЛОВИМИ ЗУБНИМИ ПРОТЕЗАМИ (КЛІНІКО-ЕКСПЕРИМЕНТАЛЬНЕ ОБҐРУНТУВАННЯ) 181.5 KB
  Мета дослідження. Підвищення якості ортопедичного лікування хворих на цукровий діабет 2 типу шляхом удосконалення конструкцій часткових знімних пластинкових протезів, розроблення методу профілактики протезних стоматитів.
68287. ОСОБЛИВОСТІ ПРОТИДІЇ УКРАЇНСЬКИХ ГРЕКО-КАТОЛИКІВ РЕЛІГІЙНІЙ ПОЛІТИЦІ РАДЯНСЬКОЇ ВЛАДИ У 1946 – 1989 РОКАХ 153.5 KB
  Метою дисертаційного дослідження є встановлення особливостей поширення опору населення релігійній політиці радянської влади у середовищі грекокатоликів у західних областях України у 1946-1989х рр. на Закарпатті; дослідити характерні риси формування підпільної мережі грекокатоликів у другій половині...
68288. ПРИНЦИПИ АРХІТЕКТУРНО-ПЛАНУВАЛЬНОЇ ОРГАНІЗАЦІЇ ТОРГОВО-РОЗВАЖАЛЬНИХ КОМПЛЕКСІВ (НА ПРИКЛАДІ КРАЇН БЛИЗЬКОГО СХОДУ) 6.2 MB
  Найбільш чітко ця система реалізується в сучасних торгово-розважальних комплексах ТРК. Аналіз європейського і близькосхідного досвіду проектування ТРК свідчить про необхідність систематизації наукового обґрунтування і розробки основ проектування сучасних ТРК для країн регіону АльШам.
68289. УДОСКОНАЛЕННЯ МЕХАНІЗМІВ ФУНКЦІОНУВАННЯ ДЕРЖАВНОГО ТЕХНІЧНОГО НАГЛЯДУ НА РЕГІОНАЛЬНОМУ РІВНІ 180 KB
  Важливою складовою останнього є реалізація державної політики щодо нагляду за технічним станом та дотриманням правил технічної експлуатації машин в агропромисловому комплексі яку покладено на органи державного технічного нагляду.
68290. УДОСКОНАЛЕННЯ СТРУКТУРИ ТА ЗМІСТУ ФІЗИЧНОЇ ПІДГОТОВКИ ЛИЖНИКІВ-ДВОБОРЦІВ НА ЕТАПІ ПОПЕРЕДНЬОЇ БАЗОВОЇ ПІДГОТОВКИ 290 KB
  Зростання спортивних результатів у лижному двоборстві великою мірою залежить від ефективності системи багаторічної підготовки юних спортсменів. Проблемі фізичної підготовки юних спортсменів присвячено низку робіт вітчизняних і закордонних спеціалістів...
68291. Институциональные основы регулирования рынка рекламных и PR-услуг 577.5 KB
  В рекламе не следует поощрять и призывать детей увеличивать количество приемов пищи в день или заменять основное питание легкой пищей. Однако именно об этом идет речь в рекламе «Данон» - имеет место призыв заменить бифштекс рекламируемым йогуртом.
68292. Процесс и технологии правового обучения 284.5 KB
  Функции процесса обучения обусловлены базисным законом, детерминирующим само его существование: объективной общественной потребностью в обучении и усвоении молодым поколением социального опыта для его воспроизведения и развития.
68293. Проекты образования СССР Мдивани, Раковского, Султан-Галиева 28 KB
  Присоединение Финляндии к России. Особый статус Финляндии в Российском государстве Ништадский и Абосский мир постепенное присоединение Выборга и прилегающих территорий. Российское правительство не могло не учитывать традиции почти столетней истории так называемой...