37870

Сравнение репрезентативности случайной, механической и серийной выборок из генеральной совокупности

Лабораторная работа

Информатика, кибернетика и программирование

Обычно считается что чтобы иметь право судить о генеральной совокупности по выборке выборка должна быть образована случайно. Это можно достичь различными способами наиболее распространенными: собственнослучайная выборка; механическая; типическая; серийная. Собственнослучайная выборка Существует два подхода к решению данной задачи: Простая случайная выборка с возвращением объект извлекается из генеральной совокупности случайным образом и перед извлечением следующего возвращается обратно Например после отбора деталей на...

Русский

2013-09-25

91.5 KB

17 чел.

Лабораторная работа № 3

Сравнение репрезентативности случайной, механической и серийной выборок  из генеральной совокупности.

Цель работы: познакомиться с различными способами выборки объектов из генеральной совокупности. Оценить представительность выборок.

В данной работе студенты строят генеральные совокупности случайных распределений различных типов (равномерное, нормальное и так далее), а затем, используя различные стратегии выборки, оценивают представительность выборочных методов (качественно).

“Основной целью статистического анализа является выяснение некоторых свойств рассматриваемой генеральной совокупности. Если генеральная совокупность конечна, то наилучшая процедура — рассмотреть каждый ее элемент”1.

Однако чаще всего на практике приходится ограничиваться выборочными значениями из генеральной совокупности. Основное требование к выборке — хорошо представлять (быть репрезентативной, представительной) генеральную совокупность.

Обычно считается, что чтобы иметь право судить о генеральной совокупности по выборке, выборка должна быть образована случайно. Это можно достичь различными способами (наиболее распространенными):

  •   собственно-случайная выборка;
  •   механическая;
  •   типическая;
  •   серийная.

Собственно-случайная выборка

Существует два подхода к решению данной задачи:

Простая случайная выборка с возвращением — объект извлекается из генеральной совокупности случайным образом, и, перед извлечением следующего, возвращается обратно (Например, после отбора деталей на анализ соответствия стандарту из большой партии, их снова возвращают назад и партию перемешивают);

Выборка без возвращения — извлеченный объект не возвращается в генеральную совокупность, а значит может появиться в выборке только один раз. (Например, отбор деталей производится с конвейера и после деструктивного анализа (разрушающего), возврат уже не возможен).

Рис. . Выборка элементов из генеральной совокупности

Если генеральная совокупность бесконечна, то процедуры выборки как с возвращением, так и без него, дают простую случайную выборку. Если генеральная совокупность конечна и велика по сравнению с размером выборки, то процедура извлечения без возвращения дает приблизительно простую случайную выборку. Если генеральная совокупность конечна и объем выборки составляет заметную долю от размера генеральной совокупности, то различие между этими двумя методами становится заметным.

Механическая выборка

Механической называется выборка, в которую объекты из генеральной совокупности отбираются через определенный интервал.

Рис. . Пример механической выборки из периодической случайной величины

Например, если объем выборки должен составлять 5% объема генеральной совокупности, то отбирается каждый двадцатый объект генеральной совокупности. Опасность, которая подстерегает исследователя при использовании этого метода — попасть в период периодически изменяющейся случайной величины (см. рис.20).

Типическая выборка

Если генеральную совокупность предварительно разбить на непересекающиеся группы, а затем образовать собственно-случайные выборки (с возвратом или без) из каждой группы и все отобранные объекты считать попавшими в выборку, то получим выборочную совокупность, называемую типической выборкой.

Считается, что типическая выборка с большей достоверностью воспроизводит однородную генеральную совокупность.

Серийная выборка

Если генеральную совокупность предварительно разбить на непересекающиеся серии (группы), а затем, рассматривая серии как элементы некой мегасовокупности, образовать из них собственно-случайную выборку (с возвратом или без) и все объекты отобранных серий считать попавшими в выборку, то получим выборочную совокупность, которая называется серийной.

Пример: На заводе 150 станков производят одинаковые изделия. Если отбирать изделия в выборку из тщательно перемешанной продукции всех 150 станков, то образуется собственно-случайная выборка. Но можно разделять продукцию станков и отбирать изделия отдельно из продукции первого, второго и так далее всех 150 станков. Это будет типическая выборка. Но если сначала случайным образом выбрать, например 15 станков и всю их продукцию считать попавшей в выборочную совокупность, то это будет серийная выборка.

ЗАДАНИЕ

Для выполнения работы сгенерируйте 1000 случайных чисел, распределенных нормально. Для этого воспользуйтесь специальным инструментом для генерации различных последовательностей чисел, подчиняющимся выбранным типам распределения (инструмент Анализ Данных в меню Сервис).  Для набора данных в таблице со случайными числами с нормальным распределением некоторого признака, выполнить:

  1.  Считая распределение нормальным, принять набор данных за генеральную совокупность (всего данных — 1000).
    1.  Рассчитать параметры, которые характеризуют нормальное распределение (минимум, максимум, размах вариации, количество интервалов, частоту, среднее арифметическое, среднее квадратичное отклонение).
      1.  Построить полигон частот для заданной генеральной совокупности.

Анализ репрезентативности различных видов выборок.

Собственно-случайная выборка

  1.  Пронумеровать данные любым доступным способом.
    1.  Создать выборку – массив из 100 элементов, поместив в нее значения из генеральной совокупности, которые соответствуют номерам, сгенерированным случайным образом в диапазоне от 1 до 1000.

В качестве Генератора случайных чисел воспользоваться математическими функциями Excel — СЛЧИС() или СЛУЧМЕЖДУ(). Эти функции при каждом обращении генерируют одно, равномерно распределенное, число в заданном диапазоне.

  1.  Для полученной выборки рассчитать параметры нормального распределения и построить полигон частот.

Механическая выборка

  1.  Задать самостоятельно интервал выбора и выбрать для дальнейшей обработки из генеральной совокупности 100 значений.
    1.  Рассчитать параметры нормального распределения для данного типа выборки и построить полигон частот.

Серийная выборка

  1.  Разделить генеральную совокупность на 10 серий.
    1.  Выбрать самостоятельно одну серию данных и все ее значения считать серийной выборкой.
      1.  Рассчитать параметры нормального распределения для этой выборки.
      2.  Построить полигон частот для серийной выборки.

Выводы

На основании полученных данных сделать качественный вывод о репрезентативности различных методов получения выборочных данных. Сравнить параметры распределений и виды графиков (полигоны для этого случая построить на одном графике, выбрать режим XY-точечная диаграмма).

Справка по Excel

Для выбора чисел из генеральной совокупности (1000 — чисел) можно воспользоваться набором функций:

СЛЧИС() или СЛУЧМЕЖДУ() — генерация случайного числа. Первая функция возвращает значение в диапазоне [0,1]. Вторая — в диапазоне, заданном пользователем.

 ФИКСИРОВАННЫЙ() — преобразование числа в текст в фиксированном формате.

 СЦЕПИТЬ() — конкатенация (склейка) двух текстовых строк.

 ДВССЫЛ() — ссылка на ячейку, указанную в аргументе, как на адрес, содержащий искомое значение. Например, если мы хотим получить значение, содержащееся в ячейке D4, то необходим вызов функции: =ДВССЫЛ(D4) (D4 — текст).

A

B

C

D

1

24

а2

12

2

12

а51

41

¼

¼

50

756

а1

24

51

41

а100

999

Рис. . Пример использования функций

Таким образом, получение заданной выборки сводится к созданию массива адресов (столбец В) и массива значений, выбранных по этим адресам (столбец С).


                    

 

         

 

 

 

 

F

 

F

 

 

                             

                                                                              

F(x)

 

2

 

1

 

   

             

 Период случайной функции  Т

 

                                     

х

 

=ДВССЫЛ(b2)

=СЦЕПИТЬ("a";(СЛУЧМЕЖДУ(1;1000))

1  См. Лабораторную работу 1.


 

А также другие работы, которые могут Вас заинтересовать

45517. Правила Джексона для перехода от модели Чена к реляционной модели 46.5 KB
  Растут деревья на участках леса: Дерево Участок Площадь Сосна Бор 1 Береза Роща 2 Осина Лиственный лес 3 Если 1о:1н то для представления информации необходимо 2 таблицы отдельная таблица для необязательного класса принадлежности. Тогда 1 таблица описывает участки 2 таблица описывает породы деревьев 3 таблица является связующей она содержит информацию о том на каком участке какое дерево растет. Первая таблица описывает первый объект вторая таблица описывает второй объект а третья таблица описывает связь. Если nобъектных...
45518. Примеры бинарных связей 52 KB
  Отношение эквивалентности Определение 8. Отношение на множестве называется отношением эквивалентности если оно обладает следующими свойствами: для всех рефлексивность Если то симметричность Если и то транзитивность Обычно отношение эквивалентности обозначают знаком или и говорят что оно отношение задано на множестве а не на . Условия 13 в таких обозначениях выглядят более естественно: для всех рефлексивность Если то симметричность Если и то транзитивность Легко доказывается что если на множестве задано...
45520. Архитектуры БД 37.5 KB
  По этой причине при построении информационной системы приходится решать задачу согласованного управления распределенной базой данных иногда применяя методы репликации данных. При однородном построении распределенной базы данных на основе однотипных серверов баз данных эту задачу обычно удается решить на уровне СУБД большинство производителей развитых СУБД поддерживает средства управления распределенными базами данных. для управления отдельными частями распределенной базы данных используются разные серверы то приходится прибегать к...
45521. Проектирование базы данных с помощью нормализации 49.5 KB
  Таблица находится в первой нормальной форме 1Н. Таблица находится во второй нормальной форме 2Н. Таблица находится в третьей нормальной форме 3Н. Таблица находится в нормальной форме БойсаКодда Н.
45522. Операция «соединение» и ее свойства 34 KB
  Внутренняя а естественное соединение осуществляется по равенству значений в одноименных столбцах. rBC sBD = qBCD 11 112 11b 112b 123 42c 113 113b 421c операция соединения для таблиц с одинаковыми схемами равносильна операции пересечения: rB sB = qB 11...
45523. Разложение без потерь. Теорема. Примеры 29.5 KB
  Договоримся, что малыми латинскими буквами мы будем обозначать таблицы, большими латинскими буквами – атрибуты и множества атрибутов. Например, r(R) – это таблица r со множеством атрибутов R
45524. Полностью соединимые отношения. Примеры 24.5 KB
  Пример: rB sB qBC b1 b1c b1c b2 B b – неполное соединение BC b1c полное соединение. Для того чтобы было полное соединение необходимо чтобы в соединяемых столбцах были все значения R и S.
45525. Операторы описания данных в SQL 42 KB
  Check Условие – это значение должно быть истинным чтобы компьютер признал все изменения правильными; Unique список полей – все значения в комбинации полей должны быть уникальными; Primry key список полей – указывается на уровне таблицы если первичный ключ состоит из нескольких полей; References имя_поля1 from имя_таблицы1 поле1 – в нашей таблице имя_поля1 берется из таблицы1 поля1. Restrict указывает каким образом поддерживается On delete cscde...