37871

Проектування цифрових автоматів з пам’яттю

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цифровий автомат – це пристрій, який здійснює приймання, зберігання і перетворення дискретної інформації за деяким алгоритмом.

Украинкский

2013-09-25

1.6 MB

13 чел.

Лабораторна робота №10

Тема: Проектування цифрових автоматів з пам’яттю.

Мета роботи: навчитися проектувати цифрові автомати з пам’яттю.

Теоретичні відомості

Вузли і пристрої, що містять елементи пам’яті, відносяться до класу автоматів з пам’яттю.

Цифровий автомат – це пристрій, який здійснює приймання, зберігання і перетворення дискретної інформації за деяким алгоритмом.

Абстрактний цифровий автомат A визначається сукупністю п’яти об’єктів  {λ, ϕ, Y , S , X}, де X = {Xi},  – множина вхідних сигналів автомата А (вхідний алфавіт автомата А);

S = {Sj},  – множина станів автомата А (алфавіт станів автомата А);

Y = {Yk},  – множина вихідних сигналів автомата А (вихідний алфавіт автомата А);

ϕ – функція переходів автомата А, яка відображає , тобто ставить у відповідність будь-якій парі елементів добутку множин (S×X) елемент множини S;

λ – функція виходів автомата А, яка задає відображення  або .

За способом формування функції виходів розрізняють наступні типи автоматів: автомат Мілі, автомат Мура (рис.10.1).

В абстрактному автоматі Мілі функція виходів λ задає відображення .

Автомат Мілі характеризується системою рівнянь:

Автомат Мура – системою рівнянь:

Синтез цифрових автоматів з пам’яттю можна розділити на наступні етапи:

1) кодування;

2) вибір елементів пам’яті автомата;

3) вибір структурно-повної системи елементів (типу автомату);

4) побудова рівнянь булевих функцій виходів і збудження автомата;

5) побудова функціональної схеми автомата.

Автомат Мілі

Автомат Мура

Рис. 10.1. Структурні схеми автоматів з пам’яттю

Розглянемо кожний із етапів детально.

1. Кодування.

Процес заміни букв алфавітів S, Y, X цифрового автомата двійковими векторами називається кодуванням і може бути описаний таблицею (табл. 3, табл. 4, табл. 5). В лівій частині таблиці перераховуються всі букви (наприклад вхідного алфавіту), а в правій – двійкові вектори, які ставляться у відповідність цим буквам.

Таблиця 1

Таблиця переходів

Стан

автомата

Вхідні сигнали

х1

х2

s1

s2

s1

s2

s2

s1

s3

s3

s2

Таблиця 2

Таблиця виходів

Стан

автомата

Вхідні сигнали

х1

х2

s1

у1

у3

s2

у2

у4

s3

у1

у2

Функція переходів

Функція виходів

Розглянемо кодування букв алфавітів Y, X, S.

Таблиця 3

Вхідні

сигнали

Код

х1

0

х2

1

Таблиця 4

Стан

Код

s1

00

s2

01

s3

10

Таблиця 5

Вихідні

сигнали

Код

у1

00

у2

01

у3

10

у4

11

Таблиця переходів і виходів після кодування має вигляд:

Таблиця 6

Таблиця переходів

Стан

автомата

Вхідні сигнали

0

1

00

01

00

01

01

00

10

10

01

Таблиця 7

Таблиця виходів

Стан

автомата

Вхідні сигнали

0

1

00

00

10

01

01

11

10

00

01

2. Вибір елементів пам’яті автомата.

В якості елементів пам’яті структурного автомата використовують тригери різних типів: D-тригери, Т-тригери, RS-тригери, JК-тригери.

Таблиці переходів тригерів.

Таблиця 8

Стан

D-тригера

Вхідний

сигнал D

0

1

0

0

1

1

0

1

Таблиця 9

Стан

Т-тригера

Вхідний

сигнал T

0

1

0

0

1

1

1

0

Таблиця 10

Стан

RS-тригера

Вхідні

сигнали R,S

00

01

10

0

0

1

0

1

1

1

0

Таблиця 11

Стан

JK-тригера

Вхідні

сигнали J,K

00

01

10

11

0

0

0

1

1

1

1

0

1

0

Виберемо в якості елемента пам’яті Т-тригер. Складаємо матрицю переходів Т-тригера, користуючись таблицею 9.

Таблиця 12

Матриця переходів

Перехід

Вхід

0 → 0

0

0 → 1

1

1 → 0

1

1 → 1

0

Таблиця збудження елементів пам’яті будується на основі кодованої таблиці переходів (табл. 6) та матриці переходів тригера (табл. 12).

Таблиця 13

Таблиця переходів

Стан

автомата

а1 а2

Вхідні сигнали

х = 0

х = 1

0 0

0 1

0 0

0 1

0 0

0 1

1 0

0 0

1 1

u1 u2

u1 u2

4. Складаємо рівняння.

Символами u1 і u2 в таблиці позначають функції збудження елементів пам’яті а1 і а2. Перепишемо таблицю 13 окремо для кожної функції u1 і u2.

Таблиця 14

Таблиця для u1

а1 а2

х

0

1

0 0

0

0

0 1

0

0

1 0

0

1

Таблиця 15

Таблиця для u2

а1 а2

х

0

1

0 0

1

0

0 1

0

1

1 0

0

1

Отримані таблиці легко перетворюються на карти Карно для знаходження аналітичного вираження функцій збуджень.

Таблиця 16

Карта Карно для u1

а1 а2

х

0

1

0 0

0

0

0 1

0

0

1 1

~

~

1 0

0

1

Таблиця 17

Карта Карно для u2

а1 а2

х

0

1

0 0

1

0

0 1

0

1

1 1

~

~

1 0

0

1

Складаємо рівняння для побудови комбінаційної схеми збудження цифрового автомата.

Таблиця виходів складається на основі таблиці 7.

Таблиця 18

Таблиця виходів

Стан

автомата

а1 а2

Вхідні сигнали

х = 0

х = 1

0 0

0 0

1 0

0 1

0 1

1 1

1 0

0 0

0 1

у1 у2

у1 у2

Таблиця 19

Таблиця для у1

а1 а2

х

0

1

0 0

0

1

0 1

0

1

1 0

0

0

Таблиця 20

Таблиця для у2

а1 а2

х

0

1

0 0

0

0

0 1

1

1

1 0

0

1

Таблиця 21

Карта Карно для у1

а1 а2

х

0

1

0 0

0

1

0 1

0

1

1 1

~

~

1 0

0

0

Таблиця 22

Карта Карно для у2

а1 а2

х

0

1

0 0

0

0

0 1

1

1

1 1

~

~

1 0

0

1

Складаємо рівняння для побудови комбінаційної схеми формування вихідних сигналів автомата.

– відповідно прямий та інверсний виходи тригера Т1.

Рис. 10.2. Функціональна схема цифрового автомата Мілі, реалізованого на Т-тригерах.

Підключивши до входу схему, зображену на рис. 10.3, а до виходів – логічні індикатори, можна перевірити відповідність схеми заданим таблицями переходів та виходів значенням.

Рис. 10.3. "Ручний" генератор коду.

Розглянемо інший випадок, коли в якості елемента пам’яті обрано RS-тригер. Складаємо матрицю переходів RS-тригера, користуючись таблицею 10.

Таблиця 23

Матриця переходів

Перехід

Вхід R

Вхід S

0 → 0

~

0

0 → 1

0

1

1 → 0

1

0

1 → 1

0

~

Таблиця збудження елементів пам’яті будується на основі кодованої таблиці переходів (табл. 6) та матриці переходів тригера (табл. 23).

Таблиця 24

Таблиця переходів

Стан

автомата

а1 а2

Вхідні сигнали

х = 0

х = 1

0 0

~0   01

~0   ~0

0 1

~0   0~

~0   10

1 0

0~   ~0

10   01

R1S1  R2S2

R1S1  R2S2

Символами R1, S1, R2 та S2 позначають функції збудження елементів пам’яті а1 і а2. Перепишемо таблицю 24 окремо для кожної функції.

Таблиця 25

Таблиця для R1

а1 а2

х

0

1

0 0

~

~

0 1

~

~

1 0

0

1

Таблиця 26

Таблиця для R2

а1 а2

х

0

1

0 0

0

~

0 1

0

1

1 0

~

0

Таблиця 27

Таблиця для S1

а1 а2

х

0

1

0 0

0

0

0 1

0

0

1 0

~

0

Таблиця 28

Таблиця для S2

а1 а2

х

0

1

0 0

1

0

0 1

~

0

1 0

0

1

Отримані таблиці легко перетворюються на карти Карно для знаходження аналітичного вираження функцій збуджень.

Таблиця 29

Карта Карно для R1

а1 а2

х

0

1

0 0

~

~

0 1

~

~

1 1

~

~

1 0

0

1

Таблиця 30

Карта Карно для R2

а1 а2

х

0

1

0 0

0

~

0 1

0

1

1 1

~

~

1 0

~

0

Таблиця 31

Карта Карно для S1

а1 а2

х

0

1

0 0

0

0

0 1

0

0

1 1

~

~

1 0

~

0

Таблиця 32

Карта Карно для S2

а1 а2

х

0

1

0 0

1

0

0 1

~

0

1 1

~

~

1 0

0

1

Складаємо рівняння для побудови комбінаційної схеми збудження цифрового автомата.

Рівняння виходів не залежать від тригерної елементної бази, тож вони не відрізняються від отриманих при синтезі ЦА на Т-тригерах:

– відповідно прямий та інверсний виходи тригера RS1.

Рис. 10.3. Функціональна схема цифрового автомата Мілі, реалізованого на RS-тригерах.

Порядок виконання роботи

1. Заміняємо букви алфавітів S, Y, X цифрового автомата двійковими векторами.

2. Складаємо рівняння для побудови комбінаційної схеми збудження цифрового автомата.

3. Складаємо рівняння для побудови комбінаційної схеми формування вихідних сигналів автомата.

4. Будуємо функціональну схему цифрового автомата.

5. Перевіряємо роботу цифрового автомата.

Зміст звіту

1. Тема і мета роботи.

2. Вихідні дані для виконання роботи.

3. Результати виконання всіх пунктів синтезу автомата.

4 Функціональні схеми роботи цифрового автомата з пам’яттю та часові діаграми.

5. Висновки.

Індивідуальні завдання.

Спроектувати цифровий автомат Мілі згідно заданих таблиць переходів і виходів. Комбінаційну схему збудження і комбінаційну схему формування вихідних сигналів реалізувати в заданому базисі.

Увага! Ті, хто виконують варіанти 13–25, отримують завдання за остатком від ділення номеру свого варіанту на 12.

Тип тригера змінюється з J-K на Т, та з R-S на D.

Контрольні запитання

1. Дайте визначення цифрового автомату.

2. Нарисуйте структурну схему автомата Мілі.

3. Нарисуйте структурну схему автомата Мура.

4. Чим відрізняється цифровий автомат Мілі від цифрового автомата Мура?

5. З яких етапів складається структурний синтез цифрових автоматів?


 

А также другие работы, которые могут Вас заинтересовать

40157. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ СИГНАЛОВ И ПОМЕХ 2.32 MB
  Для стационарного случайного процесса двумерная плотность вероятности и соответственно корреляционная функция зависят не от t1 и t2 в отдельности а только от их разности = t2 t1. В соответствии с этим корреляционная функция стационарного процесса определяется выражением 3.1 где математическое ожидание стационарного процесса; х1 х2 возможные значения случайного процесса соответственно в моменты времени t1 t2 ; = t2 – t1 интервал времени между сечениями; двумерная...
40158. ВРЕМЕННОЙ И СПЕКТРАЛЬНЫЙ АНАЛИЗ ПРОХОЖДЕНИЯ СЛУЧАЙНОГО ПРОЦЕССА ЧЕРЕЗ ЛИНЕЙНЫЕ СИСТЕМЫ 1.39 MB
  3 справедливы в полной мере если xt есть реализация случайного процесса t. Но эти формулы служат для решения основной задачи анализа линейной цепи при случайных воздействиях заключающейся в нахождении вероятностных характеристик выходного случайного процесса t если известны вероятностные характеристики входного случайного воздействия и определена цепь посредством задания порядка и коэффициентов дифференциального уравнения или импульсной характеристики. Требуется найти математическое ожидание t и корреляционную функцию...
40159. ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА 548 KB
  Введение в теорию оптимального радиоприема ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА Помехоустойчивость и ее основные задачи Особенность радиоприёма состоит в том что наряду с сигналами через антенную систему в приёмное устройство поступают разнообразные помехи. Количественно помехоустойчивость оценивается с помощью различных показателей использующих вероятностное описание помех и сигнала. Например применяются такие показатели как отношение сигнал шум на входе и выходе приёмного устройства вероятность правильного обнаружения...
40160. ИМПУЛЬСНЫЕ УСИЛИТЕЛИ МОЩНОСТИ 340.5 KB
  Основными определяющими факторами являются длительность фронта и среза импульса коллекторного перехода стокового тока транзистора и тип нагрузки активной и активно – индуктивной. Первый способ применяется когда возможно произвольно варьировать параметрами нагрузки. Тогда параметры нагрузки выбираются таким образом чтобы к моменту коммутации автоматически выполнялось условие Uкл=0 или Iкл=0. Второй способ используется если параметры нагрузки строго заданы и состоит во введении в схему дополнительных цепей искусственно разносящих во...
40161. ЦИФРОВАЯ ЭЛЕКТРОНИКА. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ЦИФРОВЫХ УСТРОЙСТВ 295 KB
  2 Основные способы записи функций алгебры логики ФАЛ Функции алгебры логики ФАЛ – зависимость выходных переменных Zi выраженная через совокупность входных переменных х1х2хn. Логические устройства – работа которых описывается с помощью ФАЛ. 1 Описание ФАЛ в виде таблице истинности табл. Описание ФАЛ в виде алгебраического выражения: а логическое сложение ИЛИ – дизъюнкция б логическое умножение И – конъюнкция в отрицание инверсия НЕ если х = 1 то ;если х = 0 то Дизъюнктивная нормальная форма ДНФ –...
40162. ОСНОВНЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ 378 KB
  По принципу действия: комбинационные – автоматы без памяти, входные сигналы которых определяются действующей на входе комбинацией переменных; последовательные – автоматы с памятью, выходные сигналы которых определяются не только действующей комбинацией переменных, но и предыдущей.
40163. МИНИМИЗАЦИЯ ЛОГИЧЕСКИХ УСТРОЙСТВ 518 KB
  Минимизация с применением карт Вейча Карты Вейча – это прямоугольная таблица число клеток в которой для ФАЛ n – переменных равно 2n каждой из клеток поставлен в соответствие набор входных переменных причем рядом расположенным клеткам соответствуют соседние наборы входных переменных а в самих клетках записаны значения функции определенные для этих кодов. На карте Вейча ФАЛ n – переменных выделяют прямоугольные области объединяющие выбранные значения функции 0 или 1. Каждой из выделенных областей соответствует k – куб исходной ФАЛ...
40164. КОМБИНАЦИОННЫЕ ЛОГИЧЕСКИЕ УСТРОЙСТВА 587.5 KB
  2 При построении логических устройств на реальной элементной базе возникают следующие задачи: а число входов ЛЭ больше числа переменных входящих в реализуемую с их помощью ФАЛ; б число входов ЛЭ меньше числа переменных входящих в реализуемую с их помощью ФАЛ. Решение задач: а Число входов больше требуемого. Следовательно что уменьшит фактическое число входов ЛЭ можно подавая на неиспользуемые входы сигналы пассивных логических констант: 0 – для элементов ИЛИНЕ 1 – для элементов ИНЕ; б число входов ЛЭ меньше требуемого. Сравнивая...
40165. ПОСЛЕДОВАТЕЛЬНОСТНЫЕ ЛОГИЧЕСКИЕ УСТРОЙСТВА 658.5 KB
  По типу используемых информационных входов триггеры классифицируются: RS D T JK VD и VT – триггеры где R – раздельный вход сброса триггера Q=0; К – вход сброса универсального триггера Q=0; J – вход установки универсального триггера Q=1; Т – счетный вход триггера ; D – информационный вход переключения триггера в состояние соответствующее логическому уровню на этом входе; С – управляющий или синхронизирующий вход; V – вход блокирования работы триггера и он долго сохраняет информацию. Для переключения триггера на его прямой вход...