37888

ЛАБОРАТОРНАЯ РАБОТА № 110.

Лабораторная работа

Архивоведение и делопроизводство

4 ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ НА ОСИ КОЛЬЦЕВОЙ КАТУШКИ Методическое указание к выполнению лабораторной работы по курсу общей физики для студентов инженерно технических специальностей Калининград 2006 1. Цель работы: Исследование магнитного поля на оси катушки: измерить магнитную индукцию в различных точках на оси кольцевой катушки; построить график изменения магнитной индукции вдоль оси катушки; проверить результаты измерения расчётом. Для кольцевой катушки содержащей витков:...

Русский

2013-09-25

297.5 KB

5 чел.

ФГОУ ВПО «КАЛИНИНГРАДСКИЙ   ГОСУДАРСТВЕННЫЙ  

ТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ»

КАФЕДРА ФИЗИКИ

ЛАБОРАТОРНАЯ РАБОТА № 110.2.4

ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ НА ОСИ КОЛЬЦЕВОЙ КАТУШКИ

Методическое указание к выполнению лабораторной работы по курсу общей

физики для студентов инженерно - технических специальностей

Калининград

2006

1. Цель работы:

Исследование магнитного поля на оси катушки:

- измерить магнитную индукцию в различных точках на оси кольцевой катушки;

- построить график изменения магнитной индукции вдоль оси катушки;

- проверить результаты измерения расчётом.

2. Приборы и оборудование:

2.1. Блок генераторов напряжений с наборным полем (БГННП);

2.2. Миниблок  «Кольцевая катушка»;

2.3. Миниблок «Тесламетр» (содержит зонд с датчиком Холла);

2.4. Блок мультиметров (MY60 – как амперметр, MY62 – как вольтметр);

2.5. Соединительные провода – 5 штук;

2.6. Вертикальная металлическая стойка.

       3. Введение

Магнитная индукция  - силовая характеристика магнитного поля. Магнитная индукция – векторная величина. Единицы её измерения в системе СИ – тесла (Тл). Индукция магнитного поля любого тока может быть рассчитана по принципу суперпозиции полей:

                                                                                       (1)                                                                                                                                    где элементарная магнитная индукция  поля, создаваемого элементом тока , определяется по закону Био - Савара – Лапласа:

                       ,            (2)

где  - вектор, проведённый от элемента тока в ту точку, в которой определяется ;  - магнитная постоянная.

Направление  определяется по правилу правого винта (буравчика) – как результат векторного произведения вектора  и вектора .

Применение закона Био – Савара – Лапласа к расчёту поля кругового витка с током приводит к выражению:

           ,          (3)

где  - значение координаты, в которой определяется магнитная индукция (расстояние от центра кругового витка с током до точки А по оси ).

Для кольцевой катушки, содержащей  витков:

                                  (4)

Вывод рабочей формулы для кругового витка с током:

Согласно рис.1:

                     (5)

Из соображения симметрии (см. рис.2):

            ,      (6)

где , ,

где  - дипольный магнитный момент,

- площадь контура,

- положительная нормаль к контуру (см. рис.3).

Таким образом,            .         (7)

Рис.1.

Рис.2.

Рис.3.

      4. Экспериментальная часть

4.1. Общие требования

4.1.1. Работы проводятся на основании   «Руководства  по выполнению базовых экспериментов» ЭМФ.001РБЭ (910).

4.1.2. Работы проводятся без применения компьютера с использованием в качестве измерительных приборов мультиметров типа MY60 и MY62.

ВНИМАНИЕ! Для измерения токов величиной более 200 мА используйте мультиметр MY60. Мультиметр MY62 используйте для измерения напряжений, а также токов менее 200 мА и других параметров.

4.1.3. В процессе использования мультиметров ЗАПРЕЩАЕТСЯ:

а) изменять род работы (амперметр, вольтметр, омметр и т.д.) при подключённых к электрической цепи мультиметрах;

б) измерять сопротивления в электрической цепи, находящейся под напряжением;

в) измерять ёмкости конденсаторов, не убедившись в том, что они разряжены.

4.1.4. При перегрузке мультиметра, то есть, при превышении измеряемым параметром установленного на мультиметре предела измерения, на шкале мультиметра высвечивается цифра «-1». Для устранения перегрузки увеличьте предел измерения.

4.1.5. Сборку и разборку схем экспериментов и присоединение установки к сети ~220 В выполняет инженер или преподаватель.

ВНИМАНИЕ! При разборке схем снятие миниблоков осуществляйте, удерживая одной рукой стойку установки, а другой – вытаскивая миниблок за его основание (а не за пластмассовую крышку или другие элементы).

4.1.6. В процессе эксплуатации мультиметров допускается их самопроизвольное отключение, в этом случае для продолжения работы нажмите кнопку включения повторно.

4.1.7. При сборке схем экспериментов гнездо «СОМ» мультиметра присоединяйте к гнёздам «-15 В» блока БГННП.

4.2. Общее устройство установки

4.2.1. Установка состоит из блока генераторов напряжений с наборным полем (БГННП), набора сменных миниблоков, соединительных проводов и кабелей, блока мультиметров, набора планшетов для моделирования полей.

4.2.2. Перечисленные блоки размещены на вертикальной металлической стойке, установленной на лабораторном столе, к сети ~220 В каждый блок присоединяется своим кабелем. Сетевые кабели постоянно присоединены к соответствующим блокам. Остальные элементы установки находятся в её ЗИПе.

4.2.3. Заземление блоков установки выполнено путём присоединения их крышек к заземляющей шине помещения лаборатории.

Блок  генераторов напряжений с наборным полем.

                                                  Рис.4

4.3. Порядок выполнения экспериментов

4.3.1. Установите миниблоки «Кольцевая катушка» и «Тесламетр» на наборную панель блока БГННП, соберите схему эксперимента в соответствии с рисунком 4. Подвижную катушку в миниблоке опустите вниз до упора и заблокируйте.

4.3.2. Присоедините блоки  установки к сети ~220 В, выведите против часовой стрелки до упора ручку регулировки выходного напряжения на блоке БГННП.

4.3.3. Установите  пределы измерения на мультиметре «А» 200 мА, на мультиметре «V» 2 В, включите блоки установки  выключателями «Сеть» и кнопками на мультиметрах.

4.3.4. Разомкните цепь питания катушки, для чего отсоедините от наборной панели один из проводов мультиметра «А».

4.3.5. Установите ручкой «Уст. 0» на миниблоке «Тесламетр» как можно точнее «0»  мультиметра «V» (допускается отклонение от нуля на единицу последней цифры на шкале).

4.3.6. Включите питание катушки, для чего верните в своё гнездо отсоединённый провод мультиметра.

4.3.7. Ручкой регулировки выходного напряжения  установите на мультиметре «А» ток через катушку I = 190 мА. В течение выполнения эксперимента поддерживайте значение тока в пределах (189…191) мА - не более.

4.3.8. Возьмите зонд с датчиком Холла (ДХ), введите его сверху в отверстие миниблока «Кольцевые катушки» и опускайте вниз до тех пор, пока не достигнете максимального значения выходного напряжения Uвых на мультиметре «V».

4.3.9. Поддерживая с помощью зонда ДХ полученное максимальное значение напряжения Uвых, запишите в клетку Хо  таблицы 1  со шкалы зонда на уровне верхнего торца миниблока значение координаты  с учётом её знака (вверх от нуля «минус», вниз – «плюс») и значение Uвых (В).  При записи значений напряжения учитывайте положение нуля (перед запятой).

4.3.10. Перемещая зонд от этого максимального значения сначала вниз через каждые 2,5 мм до (Х0-15), запишите в таблицу значения выходного напряжения Uвых. Затем верните зонд снова в точку Х0 и перемещайте зонд вверх до (Х0+15), также записывая через каждые 2,5 мм значения выходного напряжения.

                                                                                                                     

                                                                                                        Таблица 1

Х, мм

Х0-15

Х0-12,5

Х0-10

Х0-7,5

Х0-5

Х0-2,5

Х0=0

Uвых, В

Вэкс, мТл

Х, мм

Х0+2,5

Х0+5

Х0+7,5

Х0+10

Х0+12,5

Х0+15

Uвых, В

Вэкс, мТл

4.3.11. Установите ручку регулировки выходного напряжения  против часовой стрелки до упора, выключите блоки и отсоедините их от сети ~220 В.

4.3.12. Рассчитайте значения  магнитной индукции в каждой точке по формуле:

В (мТл) = 10 U вых (B),

занесите в таблицу полученные значения.

4.3.13. На миллиметровке формата А4 постройте график зависимости  В =

= f (Х), при этом точку Х0 расположите в начале координат. Кривую проведите плавно, без изломов.

4.3.14. Рассчитайте значения магнитной индукции для координат Х по формуле:

                                           ,        где

I  -  ток в цепи катушки,

R = 7,0 ± 0,1(мм) - радиус катушки,

W = 250 – количество витков катушки,

Х – координата зонда ДХ,

µ0 = 4. 10-7   -  магнитная постоянная,

и запишите в таблицу 2 как Врасч, мТл.

                                                                                                              

                                                                                                        Таблица 2

Х, мм

Х0-15

Х0-12,5

Х0-10

Х0-7,5

Х0-5

Х0-2,5

Х0=0

Врасч, мТл

Х, мм

Х0+2,5

Х0+5

Х0+7,5

Х0+10

Х0+12,5

Х0+15

Врасч, мТл

4.3.15. Нанесите полученные расчётные значения на экспериментальный график, изменив обозначение этих точек для их отличия от экспериментальных.

4.3.16. Проведите расчёт погрешности для Врасч при Х= Х0+10 (например).

4.3.17. Проведите сравнительный анализ полученных результатов.

       5. КОНТРОЛЬНЫЕ ВОПРОСЫ (ПРИМЕРНЫЕ)

5.1. Что такое магнитная индукция?

5.2. Что такое дипольный магнитный момент?

5.3. Принцип действия датчика Холла.

       5.4. Нарисовать картину силовых линий магнитного поля кольцевой катушки.

       5.5. Закон Био - Савара – Лапласа.

       5.6. Применение закона Био - Савара – Лапласа  к расчёту магнитной индукции, создаваемой круговым витком с током.

       5.7. Применение закона Био - Савара – Лапласа  к расчёту магнитной индукции, создаваемой прямолинейным проводником с током.

       5.8. Применение закона Био - Савара – Лапласа  к расчёту магнитной индукции, создаваемой  бесконечно длинным прямолинейным проводником с током.

       5.9.Поток вектора магнитной индукции.

       5.10. Теорема Гаусса для индукции.

       5.11. Закон полного тока.


I

R

X

A

dBx

X

dB

β

β

A

dB

B

X

I

R

S

n

Pm

B


 

А также другие работы, которые могут Вас заинтересовать

2513. Определение удельного заряда электрона магнетрона 153 KB
  Непосредственное измерение массы электрона представляет значительные трудности ввиду ее малости. Легче определить удельный заряд электрона, т.е. отношение величины заряда к массе (е / m), а по величине заряда е и удельному заряду можно найти массу m электрона. Для определения е / m могут применяться различные методы. В данной работе применен метод магнетрона.
2514. Исследование свойств плоскостного полупроводникового триода (транзистора) 609 KB
  Изучить устройство и принцип действия полупроводникового триода, Снять вольт − амперные характеристики триода; Вычислить коэффициенты усиления триода по току, напряжению и мощности.
2515. Определение волны световой волны при помощи дифракции от щели 386 KB
  Рассмотрим прохождение волны через узкую прямоугольную щель. Согласно принципу Гюйгенса каждая точка фронта волны, достигающей щели, является источником вторичных волн, распространяющихся во все стороны. Поверхность, огибающая эти волны и представляющая фронт прошедшей через щель волны.
2516. Изучение колебательного контура 277.81 KB
  Колебательные процессы широко распространены в природе и технике. Примером колебаний различных физических величин являются колебания маятников, струн, мембран телефонов, звук, свет, а также переменный электрический ток, представляющий собой электрические колебания.
2517. Определение скорости звука в воздухе методом стоячей волны (или методом резонанса) 183.89 KB
  Любая частица среды, выведенная из положения равновесия, под действием упругих сил стремится возвратиться в первоначальное положение и совершает колебания. Вместе с ней начинают колебаться и соседние с ней частицы, затем следующие и т.д. Такое распространение колебательного процесса в среде называется волной.
2518. Определение ускорения силы тяжести при помощи оборотного маятника 307 KB
  Большинство косвенных методов измерения ускорения силы тяжести g основано на использовании известной формулы для: периода Т колебаний физического маятника. Измерение ускорения силы тяжести при помощи оборотного маятника.
2519. Способы определение удельного заряда электрона методом магнетрона 48.15 KB
  В пределах точности эксперимента электрон – стабильная частица. Характер движения и траектория заряженной частицы зависят не от ее заряда или массы в отдельности. Измеряя скорости и траектории частиц, движущихся в электрических и магнитных полях, можно определить величину и знак удельного заряда.
2520. Изучение абсолютно упругого удара шаров 270.56 KB
  Изучение способов определения скорости тел до и после удара на основе законов сохранения, обоснование в процессе выполнения третьего закона Ньютона при упругом ударе тел.
2521. Определение концентрации носителей заряда и подвижности в полупроводниках различного типа 208.6 KB
  Измерили концентрацию носителей заряда и подвижности в полупроводниках различного типа. Установка для измерения концентрации и подвижности носителей заряда.