37892

Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом

Лабораторная работа

Физика

12 Лабораторная работа № 119 Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом 1. Теплоемкость и коэффициент Пуассона газа Для характеристики тепловых свойств вещества наряду с другими величинами используют молярную и удельную теплоемкости. Теплоемкость газа зависит от природы его молекул и от того как происходит его нагревание.1 Внутренняя энергия идеального газа это энергия теплового движения его молекул и атомов в молекулах.

Русский

2013-09-25

1.34 MB

82 чел.

Содержание

1. Цель работы……………………………………………………………4

2. Теоретическая часть…………………………………………………..4

3. Экспериментальная установка……………………………………….9

4. Порядок выполнения работы………………………………………..10

5. Требования к отчету………………………………………………….11

6. Контрольные вопросы……………………………………………….12

Список литературы……………………………………………………..12


Лабораторная работа № 119

Определение отношения теплоемкостей газа

при постоянном давлении и постоянном объеме

резонансным методом

1. Цель работы

1.1. Изучение процесса распространения звуковых волн в газе.

1.2. Измерение скорости звука в воздухе при различных температурах.

1.3. Определение отношения теплоемкостей воздуха при постоянном давлении и постоянном объеме.

2. Теоретическая часть

2.1. Теплоемкость и коэффициент Пуассона газа

Для характеристики тепловых свойств вещества наряду с другими величинами используют молярную и удельную теплоемкости. Удельная теплоемкость вещества представляет собой количество теплоты, которое необходимо передать единице массы вещества, чтобы нагреть его на один градус Кельвина (или Цельсия), а молярная – количество теплоты, необходимое для нагревания на один градус одного моля вещества. Теплоемкость газа зависит от природы его молекул и от того, как происходит его нагревание. Действительно, по первому закону термодинамики количество теплоты Q, полученное телом, равно сумме изменения его внутренней энергии ΔU и совершенной им работы А:

ΔU + А.                                           (2.1)

Внутренняя энергия идеального газа – это энергия теплового движения его молекул и атомов в молекулах. В общем случае она складывается из кинетических энергий поступательного и вращательного движений молекул и энергии колебательного движения атомов в них. По закону равнораспределения энергии теплового движения по степеням свободы молекулы на каждую ее поступательную и вращательную степень свободы в среднем приходится энергия, равная kT, где k – постоянная Больцмана,         T – абсолютная температура газа, а на каждую колебательную степень свободы – энергия, равная в среднем kT. Таким образом, средняя энергия     теплового движения одной молекулы идеального числа равна kT, где i – сумма числа поступательных, вращательных и удвоенного числа колебательных степеней свободы молекулы, а внутренняя энергия ν молей газа – ν RT, где R – газовая постоянная. Ее изменение при повышении температуры газа на ΔT градусов будет составлять

ΔU = i/2 ν RΔT .                                    (2.2)

При изохорном нагревании газ работы не совершает и его молярная теплоемкость при постоянном объеме CV в соответствии с ее определением оказывается равной

.                              (2.3)

Во всех остальных процессах нагревание газа сопровождается работой, которая может быть и положительной (при расширении), и отрицательной (при сжатии), при этом разной по величине в зависимости от характера изменения объема газа. Поэтому при увеличении температуры газ может как получать теплоту, так и отдавать ее, а если процесс адиабатный, то не происходит ни того, ни другого. Следовательно, и теплоемкость данного газа в зависимости от вида процесса может принимать различные значения.

При изобарном нагревании газа на ΔT градусов им совершается работа

А = ν RΔT .                                            (2.4)

Значит, при постоянном давлении молярная теплоемкость газа равна

.                              (2.5)

Отношение теплоемкостей газа при постоянном давлении к теплоемкости при постоянном объеме называют коэффициентом Пуассона или показателем адиабаты газа. Из (2.3) и (2.5) следует, что его значение γ определяется только числом степеней свободы молекул газа:

.                                        (2.6)

2.2. Взаимосвязь коэффициента Пуассона газа со скоростью распространения в нем звуковых волн

Колеблющееся тело, помещенное в упругую среду, будет воздействовать на прилегающие к нему частицы среды и приводить их в колебательное движение. Эти частицы в свою очередь будут воздействовать на соседние частицы и тоже вовлекать их в колебательное движение и т. д. Таким образом колеблющееся тело в упругой среде является источником колебаний, распространяющихся в этой среде. Этот процесс распространения колебаний в упругой среде называется упругой волной. Распространение колебаний происходит со скоростью, определяемой свойствами среды и характером колебаний.

В упругой волне колебания вовлекаемых в движение частиц среды отстают по фазе от колебаний частиц, пришедших в движение ранее, поэтому смещения соседних колеблющихся частиц в один и тот же момент времени являются различными. Значит, отдельные участки среды непрерывно периодически деформируются, т.е. в среде происходит распространение деформации с некоторой скоростью υ. Для определения ее величины рассмотрим простейший случай передачи деформации через упругий твердый стержень.

Допустим, что действуя силой F в течении короткого промежутка времени Δt на основание стержня площадью S, мы сообщим ему некоторый импульс. За указанное время точки торца стержня сместятся на некоторое расстояние Δl (рис. 2.1). Возникшая деформация будет перемещаться от одной части стержня к другой и по нему побежит волна сжатия. Если обозначить длину участка стержня, который охватит сжатие к концу промежутка Δt через l, то

u =                                                 (2.7)

представляет собой скорость распространения упругой волны сжатия вдоль стержня. По истечении времени Δt все частицы указанного участка, вначале покоившиеся, приобретут скорость

u =                                                   (2.8)

и изменение его импульса составит ρSlu, где ρ – плотность материала стержня. По законам динамики оно равно импульсу внешней силы, действовавшей на стержень:

ρSlu = F Δt.                                           (2.9)

Эта сила по величине равна силе упругости, которая по закону Гука пропорциональна относительной деформации

,                                           (2.10)

где Е – модуль упругости.

Подставляя (2.10) в (2.9), получим:

ρlu.                                          (2.11)

Принимая во внимание (2.7) и (2.8), из (2.11) находим

υ =.                                              (2.12)

В жидкостях и газах деформации сдвига неупруги. Если в них сдвинуть один слой относительно другого, то в противоположность твердым телам сдвинутые слои не будут стремиться вернуться в исходное состояние. Поэтому в жидкостях и газах могут распространяться только продольные упругие волны сжатия и расширения, скорость которых можно вычислить, пользуясь формулой (2.12).

В продольной волне, распространяющейся в газе при одностороннем его сжатии относительное ускорение  равно относительному уменьшению объема газа  . Изменение объема вызывается увеличением давления на ΔP в данном месте по сравнению с давлением P газа в невозмущенном состоянии. Это увеличение давления играет роль напряжения в твердых телах, поэтому

ΔP =.                                       (2.13)

Для сколь угодно малых изменений давления и объема (2.13) представляется в виде

,                                        (2.14)

где знак минус обусловлен тем, что увеличению давления соответствует уменьшение объема и наоборот.

Пусть в газе распространяется звуковая волна, в которой колебания сжатия и разряжения, происходящие с частотой в пределах 16 Гц – 20 кГц, способны вызвать ощущение звука. Эти колебания происходят достаточно быстро, настолько, что теплообмен между слоями газа с разной температурой не успевает произойти. В этом случае процесс изменения состояния газа в слоях можно считать адиабатным и применить к нему закон Пуассона:. Дифференцируя это уравнение получим:

                               (2.15)

откуда

.                                        (2.16)

Выразим Р из уравнения Менделеева – Клапейрона:

,                                            (2.17)

где μ – молярная масса газа. Разрешая систему уравнений (2.17), (2.16), (2.14) и (2.12), получим формулу Лапласа для расчета скорости звука в газе:

,                                            (2.18)

из которой

.                                              (2.19)

Таким образом, для определения отношения теплоемкостей газа при постоянном давлении и объеме достаточно измерить его температуру и скорость распространения в нем звуковой волны. Последнее можно сделать с помощью резонансного метода, в котором используется следующее. Звуковая волна, распространяясь в газе, заключенном в закрытой с обоих концов прямой трубе, испытывает многократные отражения от торцевых стенок, в результате чего происходит наложение волн. Если расстояние L между торцами трубы будет равно целому числу n половинок длины волны λ, т.е. если

,                                                (2.20)

то волна, отраженная от одного торца трубы, возвратившись к другому и отражаясь уже от этого торца, будет совпадать по фазе с исходящей от него волной. Такие волны усиливают друг друга. Амплитуда колебаний в этом случае резко возрастает – наступает резонанс.

Выразив длину волны λ через ее скорость υ и частоту колебаний ν (λ = υ ν), условие резонанса (2.20) можно записать в виде:

L ν0 = n υ ,                                        (2.21)

где ν0 – резонансная частота.

3. Экспериментальная установка

Для определения отношения теплоемкостей воздуха  резонансным методом используется экспериментальная установка ФПТ 1 – 7, общий вид которой показан на рис. 3.1.

Рабочий элемент установки представляет собой стеклянную трубу длиной L, на торцах которой размещены телефон и микрофон. Температуру воздуха в трубе можно изменять с помощью нагревательной спирали, навитой на трубу. Мощность нагревателя устанавливается регулятором  «Нагрев», находящемся на передней панели блока приборов 1. Температура воздуха в трубе измеряется полупроводниковым термометром и регистрируется на цифровом табло «Температура». В блоке приборов расположен генератор звуковых колебаний, подключенный к телефону, возбуждающему звуковые колебания в трубе. Частота колебаний, звукового генератора регулируется ручками «Грубо» и «Точно» и регистрируется на цифровом индикаторе «Частота». Сигнал микрофона измеряется миллиамперметром, чувствительность которого регулируется ручкой «Усиление». Максимальное значения тока, зарегистрированные миллиамперметром во время плавного изменения частоты колебаний, соответствуют появлению резонанса.

Рис. 3.1. общий вид экспериментальной установки ФПТ 1 – 7:

1 – блок приборов; 2 – блок рабочего элемента;

3 – стойка; 4 – труба с нагревателем

4. Порядок выполнения работы

1. Убедитесь в том, что тумблер «Нагрев» выключен, а регулятор температуры нагрева и ручки «Усиление», «Грубо», «Точно» находятся в крайнем левом положении.

2. Включить установку тумблером «Сеть».

3. Ручкой «Усиление» отрегулировать чувствительность миллиамперметра (стрелка должна быть приблизительно на трети шкалы).

4. Плавно увеличивая с помощью ручек «Грубо» и «Точно» частоту колебаний, задаваемых звуковым генератором, определить частоту первого резонанса по наибольшему отклонению стрелки на шкале миллиамперметра. Результат измерений занести в таблицу. Записать в ней значение температуры t1, указанной на табло «Температура».

5. Постепенно увеличивая ручкой «Усиление» чувствительность миллиамперметра определить частоту второго, третьего,…, седьмого резонансов. Производя измерения при уменьшении частоты, убедиться в повторяемости результатов. Результаты этих измерений также занести в таблицу.

6. Включить тумблер «Нагрев» и регулятором температуры нагрева достичь температуры воздуха в трубе в пределах 40 – 45°С. после стабилизации температуры произвести измерения по пп. 2 – 4.

7. Увеличивая нагрев, достичь температуры воздуха в трубе в пределах 55 – 60°С. После стабилизации температуры произвести измерения по пп. 2 – 4.

8. Регулятор температуры нагрева вывести в крайнее левое положение, выключить тумблер «Нагрев», ручки «Усиление», «Грубо» и «Точно» установить в крайнее левое положение, после чего выключить установку тумблером «Сеть».

9. Построить график зависимости резонансной частоты от номера резонанса νР = f(n) для каждой из температур и определить угловой коэффициент Kα наклона прямой для каждого графика.

10. Для каждого значения температуры воздуха в трубе, используя полученные угловые коэффициенты Kα, определить скорость звука υ по формуле υ = 2L Kα и отношение теплоемкостей γ по формуле (2.19), (молярная масса воздуха μ = 29·103 кг/моль, длина трубы L указана на установке).

11. Оценить погрешность результатов измерения.

Таблица

Номер резонанса

t1

T2

T3

νР, Гц

υ, м/с

γ

νР, Гц

υ, м/с

γ

νР, Гц

υ, м/с

γ

5. Требования к отчету

Отчет должен содержать:

1) название, номер и цель работы;

2) краткую теорию метода с расчетными формулами;

3) данные измерений νР, представленные в таблице и на графиках зависимостей резонансной частоты νР от порядкового номера резонанса r для каждой температуры;

4) полученные значения угловых коэффициентов Kα, скорости звука υ и отношения γ для каждой температуры;

5) расчет относительных погрешностей измерения υ и γ;

6) выводы по результатам работы.

6. Контрольные вопросы

1. Что называют молярной и удельной теплоемкостью вещества? Чему равна разность молярных теплоемкостей газа при постоянном давлении и при постоянном объеме?

2. Что такое коэффициент Пуассона? Чем определяется его значение?

3. Сформулируйте закон равнораспределения энергии теплового движения молекул по степеням свободы.

4. Сформулируйте первый закон термодинамики.

5. Какой процесс называют адиабатным? Получите закон Пуассона.

6. Почему процесс изменения состояния слоев газа при распространении в нем звуковой волны можно считать адиабатным?

7. Опишите процесс распространения звуковой волны в газе и выведите формулу для расчета ее скорости.

8. Как зависит скорость звука в воздухе от его температуры?

9. Объясните взаимосвязь коэффициента Пуассона газа со скоростью распространения в нем звуковой волны.

10. В чем заключается резонансный метод определения скорости звука в газе и его коэффициента Пуассона?

11. При каком условии в трубе с воздухом образуются стоячие волны?

Список литературы

1. Савельв И.В. Курс общей физики. – Т.1 – М.: Наука, 1989. –           С. 234 – 237, 245 – 248.

2. Зисман Г.А., Тодес О.М. Курс общей физики. – Т.1. – М.: Наука, 1965. – С. 305 – 309.

3. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989. – С. 100 – 103, 318, 323, 329.

11


Δl

Рис. 2.1


 

А также другие работы, которые могут Вас заинтересовать

82247. Познание и «переживание жизни» - основное содержание художественных произведений 57.65 KB
  Проблема жизни в ее преломлении к существованию человека привлекла внимание и философов гуманитарного склада что выразилось в появлении различного рода философий жизни экзистенциализм ницшеанство Дильтей и др. русский экзистенциализм абсолютизирующих отдельные стороны духовной жизни и психической деятельности человека. Державин в своей поэме Бог весьма образно характеризовал проблему человека: Частица целой я вселенной Поставлен мнится мне в почтенной Средине естества я той Где кончил тварей ты телесных Где начал ты духов...
82248. История как форма проявления жизни. Объективация жизни во времени. Жизнь как незавершаемая целостность.(О.Шпеннглер, Э. Гуссерль) 33.65 KB
  Объективация жизни во времени. Она может трактоваться в естественно-научном это форма движения материи психологическом это одухотворенность бытия историко-культурном это проявление жизни в разных эпохах биографическом жизнь отдельного человека и философском жизнь как благо смыслах. Она может изучаться с разных позиций например со стороны образа жизни людей стиля и манеры жизни повседневного жизненного мира человека со стороны продолжительности уровня качества жизни и т.
82249. Социальные и культурно- историческиеформы жизни:общее строение и иерархия уровней. Научные и вненаучные представления о формах жизни 41.6 KB
  Державин в своей поэме Бог весьма образно характеризовал проблему человека: Частица целой я вселенной Поставлен мнится мне в почтенной Средине естества я той Где кончил тварей ты телесных Где начал ты духов небесных И цепь существ связал всех мной. Во всех этих случаях отчетливо обнаруживаются две основные методологические тенденции в объяснении природы человека: редукционистская сводящая природу человека либо к биологической либо напротив к социальной его стороне и целостная системная понимающая природу человека как единое...
82250. Время как параметр физических событий и время как мера становления человеческого бытия (общее условие осуществления жизни) 34.6 KB
  Социальное время это продолжительность существования определенных общностей людей общественных явлений отдельных личностей а также социальных процессов. Время зависит также от самого отношения людей ко времени. В истории общества образы времени менялись так образ обратимого времени все возвращается на круги свои сменился на образ необратимого линейного времени время течет от прошлого к настоящему и от него к будущему.
82251. Объективное и субъективное время. Социальное и культурно-историческое время 32.58 KB
  Социальное и культурноисторическое время. В наст вр отмечает Микешина происходит концептуальная революция наука вновь открывает для себя время. В текстах проявляются и формируются и проявляются представления о времени социсторическое время.
82252. Переосмысление категорий пространства и времени в гуманитарном контексте (М.М. Бахтин). Введение понятия хронотопа как конкретного единства пространственно-временных характеристик 32.05 KB
  Бахтин. В гуманитарном познании Бахтина П и В проявляются как совершенно новая идея. Зная идеи о П и В Канта и Бергсона Бахтин находит свое видение этих категорий значимое для современного понимания природы темпоральности и пространственности в познании. Бахтин соединяет действующее сознание и все мыслимые пространственные и временные отношения в единый центр архетектоническое целое.
82253. Коммуникативность (общение учёных) как условие создания нового социально-гуманитарного знания и выражение социально –культурной природы научного познания 34.79 KB
  Нормальная фаза. Эта фаза в истории специальности конструируется ретроспективно только в тех случаях когда новая специальность сформировалась. Нормальная фаза часто завершается опубликованием манифеста в котором содержатся в общих чертах программа разработки проблематики и оценки ее перспективности. Фаза формированиям развития сети характеризуется интеллектуальными и организационными сдвигами приводящими к объединению исследователей в единой системе коммуникаций.
82254. Научные конвенции как необходимость и следствие коммуникативной природы познания 308.25 KB
  Проблемы общения в науке Интерес к структуре формальным моделям диалога и их содержательным возможностям возродившийся в семидесятых годах постепенно привел к формированию такого направления логико-методологических исследований которое со временем получает название...
82255. Рождение знания в процессе взаимодействия коммуницирующих индивидов. Распространение и борьба научных идей. Индоктринация 32.16 KB
  Важную роль в развитии социальногуманитарных науках играет коммуникация ученых диалог между ними. Механизмом их преодоления является постоянный диалог ученых представителей разных школ в социальногуманитарных науках. Диалог является важнейшим видом коммуникации и представляет собой попеременный обмен высказываниями репликами между двумя или более ученымигуманитариями. Диалог может представлять собой определенную дискуссию беседу диспут и т.