37893

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ВОДЫ

Лабораторная работа

Физика

12 ЛАБОРАТОРНАЯ РАБОТА № 122 ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ВОДЫ Цель работы Определение удельной и молярной теплоты парообразования воды при фазовом переходе первого рода по экспериментально полученной зависимости давления насыщенных паров от температуры.11 Полученная формула устанавливает связь между молярной теплотой парообразования воды давлением и температурой водяного пара. Изменяя температуру пара T необходимо построить график зависимости по угловому коэффициенту которого можно определить молярную теплоту парообразования...

Русский

2013-09-25

115 KB

49 чел.

Содержание

1. Цель работы…………………………………………………………..4

2. Теоретическая часть………………………………………………….4

3. Экспериментальная часть……………………………………………8

3.1. Приборы и принадлежности.....……………………………………8

3.2. Требования по технике безопасности……………………………..9

3.3. Порядок выполнения работы……………………………………...10

3.4. Обработка результатов измерения……………………………….10

4. Требования к отчёту…………………………………………...…….11

5. Контрольные вопросы……………………………………………….11

Список литературы………………....…………………………………..12


ЛАБОРАТОРНАЯ РАБОТА № 122

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ВОДЫ

  1.  Цель работы

Определение удельной и молярной теплоты парообразования воды при фазовом переходе первого рода по экспериментально полученной зависимости давления насыщенных паров от температуры.

  1.  Теоретическая часть

Фазой называется термодинамически равновесное состояние вещества, имеющая границу с другими частями системы, в которой она находится,  и отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Фазовый переход первого рода всегда сопровождается поглощением или выделением скрытой теплоты Q и изменением удельного объема  и молярного объема μυ вещества, μυ =, где  – число молей; , m – масса, μ – молярная масса вещества.

Поскольку количество скрытой теплоты зависит от массы вещества, претерпевающей фазовый переход, для характеристики процесса используется удельная теплота перехода q, отнесенная к единице массы вещества:

                                                   ,                                                  (2.1)

и молярная теплота перехода μq, отнесенная к одному молю вещества:

                                                    .                                             (2.2)

При постоянном давлении фазовый переход всегда проходит при определенной температуре, называемой температурой перехода, при которой возможно термодинамическое равновесие фаз при данном давлении. Для рассмотрения фазового перехода       «жидкость – пар» обратимся к изотермам, построенным для нескольких значений температуры (Т1, Т2) на PV диаграмме рис.2.1.

Рис.2.1. Изотермы Ван-дер-Ваальса и реального вещества

Горизонтальные участки изотерм отвечают областям фазового перехода. В процессе перехода молярный объем скачкообразно изменяется от величины , что соответствует молярному объему жидкой фазы, до  величины , что соответствует молярному объему газообразной фазы. Любая точка с координатами p и , находящаяся справа от кривой EDB, соответствует газообразному состоянию. Любая другая точка с координатами p' и , расположенная слева от кривой ECA, соответствует жидкому состоянию вещества. Все точки, лежащие внутри кривой ACEDB, соответствуют двухфазным состояниям, т.е. состояниям, при которых одновременно существует жидкость и насыщенный пар над ней. Интервал – представляет собой область двухфазного состояния (жидкость – пар) вещества. Среди всех возможностей температур есть одна, называемая критической температурой Ткр, при которой горизонтальный участок изотермы, что отвечает фазовому переходу, вырождается в точку перегиба (точка E на рис.2.1). При температуре вещества, больше критической, исчезает разница между паром и жидкостью, а вещество ни при каком давлении невозможно перевести из газообразного в жидкое состояние. За областью фазового перехода состояние реального вещества в жидкой и газообразной фазах достаточно точно описывает уравнение           Ван-дер-Ваальса, которое для одного моля газа имеет вид

                                                                           (2.3)

где а и b введены для учета потенциального взаимодействия между молекулами и собственного объема газа. Изотерма, описываемая уравнением Ван-дер-Ваальса на PV диаграмме для температуры Т1, изображена на рис.2.1 штрихпунктирной линией.

Для вычисления изменения давления насыщенного пара в зависимости от температуры проведем для одного моля вещества цикл Карно, в который входят горизонтальные участки изотерм реального вещества АВ и СD (рис.1). Пусть Р1=Р; Р2=Р+dР; Т1=Т; Т2=Т+dТ. Выполненная за цикл работа δА равна площади этого цикла на PV диаграмме, а сам цикл, учитывая близость изотерм его образующих, можно приближенно считать параллелограммом.

Тогда

                                          .                                (2.4)

В ходе изотермического фазового перехода (участок АВ) вещество получает от нагревателя количество теплоты, равное молярной теплоте перехода  . Поэтому КПД цикла можно записать в виде

     .                          (2.5)

Поскольку рассматривается цикл Карно, КПД этого цикла можно записать, используя теорему Карно:

.                                         (2.6)

Приравняв выражение (2.5) и (2.6), получим

.                                      (2.7)

Соотношение (2.7) называется уравнением                 Клапейрона-Клаузиуса. Его можно использовать для определения теплоты парообразования жидкости. Учитывая, что при температурах, далеких от критической, , получаем

.                                                 (2.8)

На участках невысоких давлений к пару можно применить законы идеального газа, и тогда удельный объем  можно определить из уравнения Клапейрона-Менделеева:

.                                             (2.9)

Подставляя значение  из формулы (2.9) в соотношение (2.8), получим

.                                   (2.10)

Считая величину q постоянной для исследуемого интервала изменения температуры, проинтегрируем уравнение (2.10)

                                           .                                  (2.11)

Полученная формула устанавливает связь между молярной теплотой парообразования воды, давлением и температурой водяного пара. Изменяя температуру пара T, необходимо построить график зависимости , по угловому коэффициенту которого  можно определить молярную теплоту парообразования воды.

Постоянную интегрирования можно найти, если известно давление насыщенного пара P0 при какой – либо одной температуре T0. При этой температуре

                                                                  (2.12)

Исключая постоянную интегрирования, получим

                                                                         (2.13)

Соотношение (2.13) выражает зависимость давления насыщенного пара от температуры.

  1.  Экспериментальная часть
    1.  Приборы и принадлежности

Для определения теплоты парообразования воды предназначена экспериментальная установка ФПТ 1 – 10, общий вид которой показан на рис. 3.1.

Рис.3.1. Общий вид экспериментальной установки ФПТ1–10:

1–блок приборов, 2–блок рабочего элемента, 3–стойка,

4–ампула с веществом, 5–термостат, 6–цифровой термометр, 7–вакуумметр.

Рабочий элемент установки представляет собой стеклянную ампулу 4 с исследуемым веществом (в данной работе исследуется вода), из которой откачан воздух до давления 0,1 ÷ 1 Па, размещенную в термостате 5. Ампула соединена с вакуумметром 7, показания которого P соответствуют разности между атмосферным давлением в лаборатории P0 и давлением водяного пара в ампуле Pп, следовательно:

PпP0P.                                            (3.1)

Температура пара измеряется цифровым термометром, датчик которого находится в термостате, и регистрируется на цифровом индикаторе «Температура» 6 блока рабочего элемента 2. Для нагрева ампулы с исследуемой жидкостью в термостате, заполненном водой, находится нагревательный элемент, выполненный из нихромовой спирали, помещенной в трубку из кварцевого стекла.

Для получения достаточной точности эксперимента нагревание воды в термостате должно происходить достаточно медленно, чтобы температуру воды в ампуле можно было считать равной температуре

воды в термостате. Необходимая мощность нагревателя устанавливается регулятором «Нагрев», который находится на передней панели блока приборов 1. В блоке рабочего элемента находится компрессор, с помощью которого в термостат можно подавать сжатый воздух для обеспечения равномерного нагревания воды в термостате. Интенсивность подачи сжатого воздуха устанавливается регулятором «Воздух», который находится на передней панели блока приборов.

3.2. Требования по технике безопасности

  1.  Перед началом выполнения лабораторной работы, внимательно ознакомьтесь с описанием экспериментальной установки.
  2.  Все электрические приборы, используемые, в экспериментальной установке должны быть обязательно заземлены.
  3.  Запрещается класть какие-либо посторонние предметы на приборы экспериментальной установки.
  4.  Запрещается прикасаться к оголённым участкам электрооборудования, предварительно их не обесточив. При обнаружении таковых – обратиться к преподавателю.
  5.  По окончании работы обесточьте приборы, приведите в порядок рабочее место.

3.3. Порядок выполнения работы

1. Убедиться в том, что уровень воды в термостате не менее чем на 2 см выше верхнего края ампулы, после чего включить установку тумблером «Сеть».

2. Включить тумблер подачи воздуха и регулятором «Воздух» установить такую интенсивность подачи сжатого воздуха в термостат, при которой обеспечивается перемешивание воды без ее сильного бурления.

3. Включить тумблер «Нагрев», регулятор мощности «Нагрев» установить в крайнее правое положение.

4. После нагревания воды до температуры 65°С уменьшить мощность нагревателя, вращая регулятор мощности «Нагрев» влево.

5. В диапазоне температур термостата (68÷98)°С снимать показания вакуумметра через каждые 2°С. Перевести показания N вакуумметра в единицы давления P = a N, где a – цена деления шкалы вакуумметра; = 2000 Па/дел. Регулятор мощности «Нагрев» вывести в крайнее левое положение, включить тумблер «Нагрев». Результаты измерений занести в таблицу.

6. Выключить подачу сжатого воздуха тумблером «Воздух».

7. Выключить установку тумблером «Сеть».

Таблица

Номер

измер.

t, ° С

Т,  К

1/Т, К-1

P, Па

PП, Па

ln PП

μ q,

Дж/моль

q,

Дж/К2

3.4. Обработка результатов измерения

  1.  По формуле (3.10) вычислить давление водяного пара в ампуле.
  2.  Построить график зависимости давления пара в ампуле от температуры пара Pп = f (T), которая соответствует фазовому переходу между жидкостью и паром.
  3.  Вычислить значения 1/Т и ln Pп и построить график зависимости: ln Pп = f (1/T). Определить угловой коэффициент Kα графика.
  4.  Используя найденный угловой коэффициент Kα, определить молярную теплоту парообразования воды μ q по формуле μ q = Kα R.
  5.  Вычислить удельную теплоту парообразования воды q, учитывая, что молярная масса воды μ=18·10 –3 кг/моль.
  6.  Определить абсолютную и относительную ошибки  результатов измерения.
  7.  Сравнить полученные данные удельной теплоты парообразования воды с табличными данными справочной литературы.

4. Требования к отчету

Отчет по лабораторной работе должен содержать:

1) номер, название лабораторной работы и цель работы;

2) приборы и принадлежности для выполнения работы;

3) блок–схему установки и основные расчётные формулы;

4) результаты измерений и вычислений в форме таблицы, график функциональной зависимости f (1/T), формулы и вычисления погрешностей измерений;

5) выводы по результатам работы.

5. Контрольные вопросы

1. Что такое фазовый переход? Назовите виды фазовых переходов.

2. Какая величина называется скрытой теплотой перехода?

3. Запишите и объясните уравнение Ван-дер-Ваальса.

4. Изобразите на PV диаграмме изотермы Ван-дер-Ваальса и реального вещества для нескольких значений температуры. Что такое критическая температура?

5. Расскажите о цикле Карно. Запишите формулу КПД цикла Карно.

6. Выведите уравнение Клапейрона-Клаузиуса. Поясните физический смысл этого уравнения.

7. Выведите основную расчетную формулу, используемую в данной работе.

8. В чем заключается метод определения теплоты парообразования воды с использованием экспериментальной зависимости Pп (T)?

9. Для чего ампулу с исследуемым веществом помещают в термостат?

10. Какие основные источники ошибок данного метода измерений?

Список литературы

  1.  Савельев И.В. Курс физики: Учеб.: В 3-х т. Т.1:Механика. Молекулярная физика. – М.: Наука, Гл.ред.физ.-мат.лит.,1989,   С.308–325.
  2.  Кикоин И.К., Кикоин А.К. Молекулярная физика. – М.: Наука, 1976, С.216–233.
  3.  Сивухин Д.В. Курс общей физики. Учеб. пособие: Для вузов. В 5 т. T.2. 4-е изд., стереот. – М.: Физматлит., Изд-во МФТИ, 2003, С.387–403, 457–473.

PAGE  3

  1.  

 

А также другие работы, которые могут Вас заинтересовать

25301. Слуховой анализатор 48.5 KB
  Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку обуславливающую цвет глаз. Внутренняя сетчатая оболочка сетчатка или ретина содержит фоторецепторы глаза палочки и колбочки и служит для преобразования световой энергии в нервное возбуждение. Светопреломляющие среды глаза преломляя световые лучи обеспечивают четкое изображение на сетчатке. Основными преломляющими средами глаза человека являются роговица и хрусталик.
25302. Вкусовой и обонятельный анализатор 23.5 KB
  Хеморецепторы вкуса представляют собой вкусовые луковицы расположенные в эпителии языка задней стенке глотки и мягкого неба. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Рецепторы разных частей языка воспринимают четыре основных вкуса: горького задняя часть языка кислого края языка сладкого передняя часть языка и соленого яердняя часть и края языка.
25303. РОЛЬ СЕНСОРНЫХ СИСТЕМ В УПРАВЛЕНИИ ДВИЖЕНИЯМИ. СОМАТОСЕНСОРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И КОРРЕКЦИЯ ДВИЖЕНИЙ 35.5 KB
  СОМАТОСЕНСОРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И КОРРЕКЦИЯ ДВИЖЕНИЙ Выполнение движений сопряжено с растягиванием кожи и давлением на отдельные ее участки поэтому кожные рецепторы оказываются включенными в анализ движений. Эта функциональная связь является физиологической основой комплексного кинестетического анализа движений при котором импульсы кожных рецепторов дополняют мышечную проприоцептивную чувствительность. Благодаря проприоцепции возможны коррекция уточнение движений в соответствии с текущими потребностями выполнения произвольного действия....
25304. Физиологические реакции живого организма 39 KB
  Раздражение Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма если оно достаточно велико возникло достаточно быстро и продолжается достаточно долго. Клетки значительно более чувствительны по отношению к своим адекватным раздражителям чем к неадекватным. Возбудимость Некоторые клетки и ткани нервная мышечная и железистая специально приспособлены к осуществлению быстрых реакций на раздражение.
25305. Стресс 33.5 KB
  0004 ГОМЕОСТАЗ Внутренняя среда организма в которой живут все его клетки это кровь лимфа межтканевая жидкость. Ее характеризует относительное постоянство гомеостаз различных показателей так как любые ее изменения приводят к нарушению функций клеток и тканей организма особенно высокоспециализированных клеток центральной нервной системы. Способность сохранять гомеостаз в условиях постоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функций организма. существовать и двигаться...
25306. Адаптация 28 KB
  У человека адаптация выступает как свойство организма которое обеспечивается автоматизированными самонастраивающимися саморегулирующимися системами сердечнососудистой дыхательной выделительной и др. Адаптация это эффективная и экономная адекватная приспособительная деятельность организма к воздействию факторов внешней среды. Чем выше уровень интеграции координированности сложных регуляторных процессов тем эффективнее адаптация.
25307. Природа потенциала покоя 28.5 KB
  Согласно этой теории биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов К' N3' СГ внутри и вне клетки и различной проницаемостью для них поверхностной мембраны. Протоплазма нервных и мышечных клеток содержит в 3050 раз больше ионов калия в 810 раз меньше ионов натрия и в 50 раз меньше ионов хлора чем внеклеточная жидкость. На структурных элементах мембраны фиксируются различные ионы что придает стенкам ее пор тот или иной заряд и тем самым затрудняет или облегчает прохождение через них ионов. Так предполагается...
25308. Потенциал действия 37.5 KB
  Потенциал действия может быть зарегистрирован двояким способом: с помощью электродов приложенных к внешней поверхности волокна внеклеточное отведение и с помощью микроэлектрода введенного внутрь протоплазмы внутриклеточное отведение. Долгое время физиологи полагали что потенциал действия представляет собой лишь результат кратковременного исчезновения той разности потенциалов которая существует в покое между наружной и внутренней сторонами мембраны. Однако точные измерения проведенные с помощью внутриклеточных микроэлектродов...
25309. Законы раздражения 44 KB
  Механизм раздражающего действия тока при всех видах стимулов в принципе одинаков однако в наиболее отчетливой форме он выявляется при использовании постоянного тока прямоугольной формы. При использовании в качестве раздражителя электрического тока порог выражается в единицах силы тока или напряжения. Существует два способа подведения электрического тока к ткани: внеклеточный и внутриклеточный. Недостаток этого метода заключается в значительном ветвлении тока: только часть его проходит через мембраны клеток часть же ответвляется в...