37906

Изучение статических характеристик и определение коэффициента усиления транзистора

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Инжекция носителей тока. Инжекция носителей тока В основе работы транзистора лежит явление полупроводников р и n типа рn переход к которому приложено внешнее электрическое поле в пропускном прямом направлении рис.1 В этом случае потенциальный барьер основных носителей на границе рn перехода снижается и под влиянием внешнего поля дырки переходят из р в n полупроводник а электроны в обратном направлении из n в р полупроводник и в цепи возникает прямой ток. Процесс рекомбинации происходит не...

Русский

2013-09-25

84.5 KB

36 чел.

Содержание

1. Цель работы……………………………………………………………4

2. Теоретическая часть…………………………………………………...4

2.1. Инжекция носителей тока…………………………………………..4

2.2. Принцип работы транзистора………………………………………6

3. Приборы и оборудование……………………………………………..8

4. Требования к технике безопасности………………………………….9

5. Выполнение работы…………………………………………………...9   

6. Требования к отчету………………………………………………….10

7. Контрольные вопросы………………………………………………..10

Список литературы…………………………………………………...11


ЛАБОРАТОРНАЯ РАБОТА № 79

Изучение статических характеристик

и определение коэффициента

усиления транзистора

  1.  цель работы

Целью данной работы является изучение принципа работы транзистора, снятие статических характеристик транзистора, включенного по схеме с общим эмиттером, и определение коэффициента усиления по току.

2. Теоретическая часть

Транзистором (полупроводниковым триодом) называется устройство, содержащее два близко расположенных рn – перехода, действующее подобно вакуумной электронной лампе с сеткой.

  1.  Инжекция носителей тока

В основе работы транзистора лежит явление полупроводников    р и n типа (рn – переход), к которому приложено внешнее электрическое поле  в пропускном (прямом) направлении рис. 2.1.

 

Рис. 2.1

В этом случае потенциальный барьер основных носителей на границе рn – перехода снижается, и под влиянием внешнего поля дырки переходят из р в n – полупроводник, а электроны в обратном направлении (из n в р – полупроводник), и в цепи возникает прямой ток.

Дырки, перешедшие в n – полупроводник, являются для него неосновными носителями; встречаясь с электронами, они рекомбинируют с ними. То же самое происходит с электронами, перешедшими в р – полупроводник, причем для этого типа полупроводника они являются неосновными носителями.

Процесс рекомбинации происходит не мгновенно, поэтому у границы рn – перехода происходит как бы «впрыскивание» электронов как неосновных носителей в приграничный слой               р – полупроводника и дырок – в приграничный слой                              n – полупроводника. Поэтому это явление получило название инжекции носителей.

По мере удаления от границы рn – перехода концентрация N неосновных носителей непрерывно уменьшается. За время dt  число неосновных носителей  уменьшается на dN, причем уменьшение числа носителей пропорционально времени dt и концентрации неосновных носителей N, так как, чем их больше, тем больше вероятность встречи их с основными носителями, приводящей к рекомбинации:

                                      – dN = ,                                         (2.1)

где  – коэффициент пропорциональности.

Разделяя переменные и интегрируя полученное выражение, получим закон, по которому изменяется с течением времени число неосновных носителей в результате рекомбинации:

                                      N = N0 e-t/τ ,                                            (2.2)

где N0 – концентрация неосновных носителей на границе рn – перехода.

Из соотношения (2.2) видно, что при t = τ , следовательно, τ это время, в течение которого число неосновных носителей уменьшается в е раз. Это время τ называется временем жизни неосновных носителей. За время жизни носители успевают проникнуть в глубь полупроводника на расстояние L, называемое диффузионной длиной носителей. L различна для различных полупроводников и зависит от количества примесей и других дефектов кристаллической решетки. Например, для чистого германия L 1 мм, для германия с примесями 0,3 – 0,5 мм.

2.2. Принцип работы транзистора

Существуют два типа транзистора: рnр и nрn, которые различаются последовательностью чередования в монокристалле полупроводника областей с различным типом проводимости (р и  n).

На рис. 2.2 показана принципиальная схема плоскостного         рnр транзистора, включенного в схему с общим эмиттером.

 

Рис. 2.2

Транзистор состоит из трех областей: левой n – области, называемой эмиттером (Э), средней р – области, называемой        базой (Б) и правой n – области, называемой коллектором (К). Эти области отделены одна от другой двумя рn – переходами: эмиттерным (1) и коллекторным (2). Эмиттерный рn – переход включен в прямом направлении, коллекторный – в обратном направлении.

Основными носителями в эмиттере nрn – транзистора являются электроны. Так как эмиттерный рn – переход включен в прямом направлении, то потенциальный барьер для электронов, совершающих переход эмиттер – база, снижается, что приводит к инжекции электронов из эмиттера в базу (р – область). В базе эти электроны становятся уже неосновными носителями. В результате инжекции электронов в базу их концентрация на границе эмиттерного перехода становится больше, чем в остальном объеме базы. Вследствие этого начинается диффузия электронов к границе второго рn – перехода, где они попадают под действие электрического поля, приложенного к переходу база – коллектор. Так как коллекторный переход (2) включен в запорном направлении, то для основных носителей базы (р – область) – дырок и коллектора       (n – область) – электронов потенциальный барьер на втором               рn – переходе увеличивается. При этом не будет перехода электронов из коллектора в базу, а для электронов базы, диффундирующих к коллектору, приложенное ко второму                 рn – переходу поле является ускоряющим и потенциального барьера для него не существует. Эти электроны втягиваются в коллектор. Таким образом, в активном режиме коллектор собирает (коллектирует) инжектированные в базу электроны, что и отражается в его названии.

Инжекция электронов из эмиттера неизбежно сопровождается их рекомбинацией с дырками базы, в результате чего количество носителей тока уменьшается. Чтобы сократить потери носителей, толщина базы берется много меньше диффузионной длины, которая составляет в германии 0,3 – 0,5 мм, поэтому в германиевых транзисторах толщина базы не более 0,25 мм.

При включении транзистора в схему с общим эмиттером (рис.2.2) усиливаемый сигнал от источника u подается между эмиттером и базой, а снимается между эмиттером и коллектором. Поток электронов из эмиттера в базу будет регулироваться напряжением источника сигнала, которое будет изменять высоту потенциального барьера на эмиттерном рn – переходе. Большая часть электронов, инжектируемых с эмиттера, будет диффундировать к коллектору и только незначительная часть уходит в цепь базы, создавая небольшой по сравнению с током коллектора Iк ток базы Iб, причем                          Iб = IэIк (Iб « Iк ).

Отношение изменения коллекторного тока к изменению тока базы называется коэффициентом усиления по току в схеме с общим эмиттером:                        .                  (при Vк = const).          (2.3)

Изменение тока базы Iб и коллектора Iк будут пропорциональны самим токам и, поскольку Iб « Iк,

                                           » 1.                                          (2.4)

Это означает, что в схеме включения транзистора с общим эмиттером достигается усиление по току.

Кроме коэффициента усиления сигнала по току () транзистор характеризуется коэффициентом усиления сигнала по напряжению, который определяется соотношением:

                                       ,                                     (2.5)

так как Rн » Rвх, то Vвых » Vвх и α » 1.

Мощность переменного тока, выделяемая в сопротивлении Rн, может быть больше, чем расходуемая в цепи эмиттера, то есть транзистор дает и усиление мощности.

Коэффициент усиления по мощности равен:

                              »1.                                   (2.6)

Характеристики транзистора  в статическом режиме, то есть при отсутствии нагрузки в цепи коллектора и, следовательно, при постоянстве напряжения, приложенного к коллекторному и эмиттерному переходам при изменении тока в цепях транзистора, называются статическими характеристиками.

3. Приборы и оборудование

В данной работе исследуются статические выходные характеристики транзисторов типа П-214, включенных по схеме с общим эмиттером. Электрическая схема установки приведена на   рис. 3.1.

 

                                                          

                                          

                                     

Рис. 3.1

Блок питания, транзистор и электроизмерительные приборы смонтированы в установку, подключаемую к сети шнуром и тумблером «Сеть». На переднюю панель установки вынесены электроизмерительные приборы: амперметр для измерения тока базы, вольтметр и амперметр для измерения коллекторного тока с пределами измерений 50 и 500 mА.

4. Требования к технике безопасности

1. Прежде чем приступить к работе, внимательно ознакомьтесь с оборудованием и заданием.

2. Перед включением установки в сеть проверьте, чтобы тумблер «Сеть» в источнике питания находился в нижнем положении («Выкл.»).

3. По окончании работы отключите питание установки и приведите рабочее место в порядок.

  1.  Не оставляйте без присмотра лабораторную установку.

5. Выполнение работы

  1.  Включают установку в сеть, переводя тумблер в положение «Вкл.».
  2.  Устанавливают ток базы Iб = 0,2 mА и меняя ручкой потенциометра напряжение на коллекторе от 1 до 8 В снимают соответствующие значения коллекторного тока (Iк). После измерений необходимо сбросить напряжение до нуля.
  3.  Повторяют измерения для тока базы Iб = 0,3 mА, 0,4 mА,      0,5 mА, 0,6 mА.
  4.  Результаты измерений заносят в таблицу.
  5.  Строят графики зависимости Iк от Vк при различных значениях тока базы Iб (на одном листе миллиметровой бумаги).
  6.  По графикам и формуле (2.3) рассчитывают коэффициент усиления по току (β) при значении Vк =6 В.
  7.  Рассчитывают погрешности определения β.

Vк (В)

Iк (mА)

Iб = 0,2 mА

Iб = 0,3 mА

Iб = 0,4 mА

Iб = 0,5 mА

Iб = 0,6 mА

  1.  Требования к отчету

Отчет должен содержать:

  1.  название и номер работы;
  2.  основные теоретические и рабочие формулы;
  3.  таблицу с результатами измерений;
  4.  графики статических характеристик транзистора (зависимость Iк от Vк) при значении тока базы Iб = 0,2 mА, 0,3 mА,   0,4 mА, 0,5 mА, 0,6 mА, выполненные на миллиметровой бумаге;
  5.  расчет коэффициента усиления по току β при Vк =6 В;
  6.  расчет погрешности в определении β;
  7.  выводы.

  1.  Контрольные вопросы

  1.  В чем заключается инжекция неосновных носителей тока в полупроводниках?
  2.  Почему уменьшается концентрация неосновных носителей при удалении от границы рn – перехода?
  3.  Что называется временем жизни и диффузионной длиной пробега носителей тока в полупроводниках?
  4.  Каков принцип работы транзистора, включенного по схеме с общим эмиттером?
  5.  Почему носители тока, перешедшие из эмиттера в базу, свободно переходят в цепь коллектора?
  6.  Почему транзистор может служить усилителем по напряжению?

Список литературы

  1.  Савельев И.В. Курс общей физики. Кн. 5. – М.: Наука, Физматгиз. 1998. – 208 с.
  2.  Епифанов Г.И. Физика твердого тела. – М.: Высшая школа, 1977. – 287 с.

10


  
--  +++++

I

                

р                              n       

 

   ●   ●     ●

   ●    ●    ●     ●     ●    ●     ●

    ●     ●     ●

  •  +
  •  +
  •  +
  •  +
  •  +

       Источник питания

V

220 B

 –

R1

 +  

mA

+ •

   Б

Э

К      +

         •

  •  

                         R2

+

mA

~

+

+

RН

  n             p          n

 Iэ               Iб      Iк 

          1          2

    

u

   Э           Б             К


 

А также другие работы, которые могут Вас заинтересовать

78938. Социологический и культурологический подходы к исследованию науки 25 KB
  Основные функции современного соц. сциентизма: социолог не определяет цели и их проблемы исследования, это результат руководства общества; так называемые руководители общества получают от социологов данные, рекомендации и прочие «орудия» технологического плана, которые они могут применять или нет в каждом нужном направлении; для выработки своих рекомендаций социологи должны полностью отказаться от фил. взглядов на общество.
78939. Традиционалистский и техногенный типы цивилизационного развития 25.5 KB
  Понятие цивилизации впервые возникло в 18 веке во Франции для обозначения общества в котором господствует свобода равенство и братство. Традиционные цивилизации. Техногенные цивилизации. Особенности техногенной цивилизации: Ориентация на совершенствование техники производства.
78940. Соотношение науки, философии, искусства, обыденного познения 36 KB
  Соотношение науки философии искусства обыденного познения. Проблема отличия науки от других форм познавательной деятельности это проблема демаркации т. 5 Для науки характерна постоянная методологическая рефлексия. Иногда можно выделить конденсат народной науки в виде заветов примет наставлений ритуалов и пр.
78941. Стратегии порождения научных знаний 29 KB
  Иными словами элементы предпосылки ростки будущей науки формировались в недрах другой духовной системы но они еще не выделялись из них как автономное самостоятельное целое. Действительно предпосылки науки создавались в древневосточных цивилизациях Египте Вавилоне Индии Китае Древней Греции в форме эмпирических знаний о природе и обществе в виде отдельных элементов зачатков астрономии этики логики математики и др. Постепенно складываются в самостоятельные отрасли знания астрономия механика физика химия и другие...
78942. Культура античного полиса и становление первых форм теоретической науки 31.5 KB
  Так в древнеегипетской цивилизации носителями знаний были жрецы в зависимости от уровня посвящения обладавшие той или иной суммой знаний. Знания существовали в религиозномистической форме и только жрецы могли читать священные книги и как носители практических знаний имели власть над людьми. Предпосылкой возникновения научных знаний многие исследователи истории науки считают миф. Особенности греческого мышления которое было рациональным теоретическим что в данном случае равносильно созерцательному наложили отпечаток на формирование...
78943. Развитие форм научного мышления в средние века 41 KB
  Но в это время существуют уже области знаний которые подготавливали возможность рождения науки. Каковы особенности интеллектуальной атмосферы Средневековья и кто являлся основными представителями средневековой науки Эпоху Средневековья относят к началу II в. Важными остаются вопросы о соотношении разума и веры науки и религии. К особенностям средневековой науки ученые причисляют ее ориентацию на совокупность правил в форме комментариев тенденцию к систематизации и классификации знаний.
78944. Формирование эмпирического метода исследования 26.5 KB
  Некоторый фрагмент действительности объективные события результаты относящиеся либо к объективной реальности факты действительности либо к сфере сознания и познания факты сознания. В научном познании факты играют двоякую роль: вопервых совокупность фактов образует эмпирическую основу для выдвижения гипотез и построения теорий; вовторых факты имеют решающее значение в подтверждении теорий если они соответствуют совокупности фактов или их опровержении если тут нет соответствия. При этом недопустимо выхватывать отдельные...
78945. Формирование рационал. метода исследования 30.5 KB
  Мышление осуществляющийся в ходе практики активный процесс обобщенного и опосредованного отражения действительности обеспечивающий раскрытие на основе чувственных данных ее закономерных связей и их выражение в системе абстракций понятий категорий и др. Человеческое мышление осуществляется в теснейшей связи с речью а его результаты фиксируются в языке как определенной знаковой системе которая может быть естественной или искусственной язык математики формальной логики химические формулы и т. Что такое мышление и каковы его основные...
78946. Общие проблемы структуры научного знания 26 KB
  С точки зрения взаимодействия объекта и субъекта научного познания последнее включает в себя четыре необходимых компонента в их единстве: а Субъект науки ключевой ее элемент: отдельный исследователь научное сообщество научный коллектив и т. в Система методов и приемов характерных для данной науки или научной дисциплины и обусловленных своеобразием их предметов. Выявление структуры науки в этом ее аспекте ставит проблему классификации наук. По предмету и методам познания выделяют науки о природе естествознание об обществе ...