37907

ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ

Лабораторная работа

Физика

Электропроводность зависит от температуры структуры вещества и от внешних воздействий напряженности электрического поля магнитного поля облучения и т. Характер зависимости σ от температуры Т различен у разных веществ. Увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решетки на которых рассеиваются электроны и σ уменьшается. при более низких температурах когда влиянием тепловых колебаний на рассеяние электронов можно пренебречь сопротивление практически не зависит от температуры.

Русский

2013-09-25

4.96 MB

108 чел.

Содержание

  1.  Цель работы……………………………………………………………...4
  2.  Теоретическая часть……………………………………………………..4
  3.  Вычисление параметров………………………………………….……..8
  4.  Приборы и оборудование….……………………………….………….10
  5.  Порядок выполнения работы.…………………………………………11
  6.  Обработка результатов измерений……………………………………11
  7.  Требования по технике безопасности……………………….………..13
  8.  Требования к отчету………………………………………….………..13
  9.  Контрольные вопросы…………………………………………………14

Список литературы………………………………………………………..14

Лабораторная работа № 80

Исследование ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ

  1.  Цель работы

Изучение температурной зависимости сопротивления металлов и полупроводников.

  1.  Теоретическая часть

В зависимости от степени заполнения валентной зоны электронами и ширины ΔE запрещенной зоны кристаллы подразделяются на металлы, полупроводники и диэлектрики.

В диэлектриках валентная зона полностью заполнена, а зона проводимости свободная. Запрещенную зону, ширина которой больше 3 эВ, под действием обычных электрических полей электроны преодолеть не могут. Поэтому диэлектрики практически не проводят электрический ток рис.2.1.

Рис. 2.1

В металлах валентная зона заполнена частично, что обуславливает существование электропроводности в этих материалах. Достаточно сообщить электронам, находящимся на верхних энергетических уровнях, небольшую энергию, чтобы перевести их на более высокие уровни, где они проявляют себя в электропроводности.

Полупроводники могут проявить себя лишь в случае, если им будет сообщена энергия, превышающая энергию запрещенной зоны ΔEE < 3 эВ). Свободная зона станет для таких электронов зоной проводимости. Одновременно могут себя проявить и электроны на верхних уровнях валентной зоны, так как эти уровни частично освобождаются. Освободившиеся состояния на верхних уровнях называют "дырками".

Плотность тока  зависит от напряженности электрического поля в данной точке и в изотропных проводниках совпадает с вектором  по направлению. Эта зависимость выражается законом Ома в дифференциальной форме . Коэффициент σ называется электрической проводимостью. Величина, обратная σ, называется удельным электрическим сопротивлением: . В общем случае зависимость  от  нелинейна и σ является функцией . В этом случае вводят дифференциальную электропроводность .

В зависимости от значений σ все вещества делятся на проводники: σ > 10 6, диэлектрики: σ < 10 – 8  и полупроводники с промежуточными значениями σ. Электропроводность зависит от температуры, структуры вещества и от внешних воздействий (напряженности электрического поля, магнитного поля, облучения        и т.п.).

Характер зависимости σ от температуры Т различен у разных веществ. Существование у металлов электрического сопротивления является следствием нарушения периодичности кристаллической решетки. Эти нарушения (дефекты) связаны с тепловым движением атомов, наличием примесных атомов, дислокаций и вакансий. На колебаниях и дефектах происходит рассеяние электронов. Увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решетки, на которых рассеиваются электроны, и σ уменьшается. При температурах, превышающих температуру Дебая θД, (для меди θД = 339 К), σ ~ ; при Т << θД σ ~ Т – 5, но ограничена остаточным сопротивлением. Температура Дебая отделяет низкотемпературную область, где необходимо пользоваться квантовой статистикой, от высокотемпературной, где справедливы законы классической статистической механики. Мерой рассеяния служит длина свободного пробега l – среднее расстояние между двумя последовательными столкновениями электронов с дефектами, при комнатных температурах l ~ 10 – 6 см.

σ = ,

где ħ – постоянная планка; n – концентрация электронов проводимости (~ 10 22 – 10 23 см – 3); e – заряд электрона.

При температурах, значительно превышающих температуру Дебая, удельное сопротивление обусловлено в основном тепловыми колебаниями атомов:

                                                 ρ = ρост (1 + αT),                                       (2.1)

α – температурный коэффициент сопротивления.

При t = 0 С о α = 4·10 – 3 к – 1.

при более низких температурах, когда влиянием тепловых колебаний на рассеяние электронов можно пренебречь, сопротивление практически не зависит от температуры. Это предельное значение сопротивления называют остаточным. Величина ρост характеризует концентрацию дефектов в решетке.

В полупроводниках σ резко возрастает при повышении температуры за счет увеличения числа электронов проводимости и положительных носителей заряда – дырок по экспоненциальному закону  

                                    σ = σ 0  σ 0 ׀ ,                              (2.2)

где σ 0, σ 0 ׀ – некоторые константы; ΔΕ / – энергия ионизации атомов примеси; к – постоянная Больцмана; Т – абсолютная температура. Энергия ионизации ΔΕ / – это та энергия, которая необходима для перехода электрона из валентной зоны на акцепторный уровень в полупроводниках р – типа и перехода с донорного уровня в зону проводимости в полупроводниках n – типа. ΔΕ / 2 – энергия Ферми: значение энергии, ниже которой все состояния системы частиц, подчиняющихся статистике Ферми – Дирака (фермионов, в частности электронов твердого тела) при абсолютном нуле температуры заняты.

Первое слагаемое в выражении (2.2) отвечает собственной проводимости и преобладает при высоких температурах, второе – при низких температурах в примесном полупроводнике.

Так как в эксперименте мы измеряем зависимость сопротивления R от температуры T, то с учетом формулы

                                           R = ρ  =                                                 (2.3)

убеждаемся, что для образца длиной l и поперечным сечением S сопротивление будет зависеть от температуры следующим образом  рис. 2.1 (1–металл, R = R 0 + Rα · T; 2 – полупроводник,                             R = R 0  R 0 /, где R 0, R 0 / – некоторые константы).

Рис. 2.1

Диэлектрики имеют заметную электропроводность лишь при очень высоких электрических напряжениях: при некотором (большом) значении Е происходит пробой диэлектрика.

3. Вычисление параметров

1.Температурный коэффициент сопротивления металла вычисляется по формуле:

                                                 ,                                              (3.1)

которая получена из формулы (2.3) с учетом выражения (2.1).

Здесь R 0 – сопротивление проводника при t = 0о С. Этот коэффициент численно равен значению изменения сопротивления проводника при нагреве на 1о С, деленному на сопротивление проводника при t = 0о С.

2. Ширина запрещенной зоны полупроводника.

Для собственных полупроводников второе слагаемое в       формуле (2.2) отсутствует, что позволяет после логарифмирования формулы (2.2) записать с учетом формулы (2.3):

.

Последнее выражение в координатах и  представляет собой уравнение прямой, тангенс угла которой можно определить по графику, построенному по экспериментальным точкам рис. 3.1.

Рис. 3.1

Это позволяет вычислить ширину запрещенной зоны:

                                            ,                                                (3.2)

где tg α  .                           

Необходимо воспользоваться линейной частью зависимости   = f (), расположенной в области малых значений  (т. е. в области высоких температур).

3. Энергия ионизации атомов примеси.

Для полупроводников, имеющих примеси, проводимость при низких температурах определяется в основном проводимостью примеси. Пренебрегая при низких температурах первым слагаемым в (2.2), после логарифмирования и подстановки в (2.3) получаем:

.

Следовательно, при низких температурах получаем зависимость, аналогичную изображенной на рис. 3.1, позволяющую вычислить энергию ионизации атомов примеси по формуле:

                                                .                                           (3.3)

4. Энергия Ферми.

В собственных полупроводниках уровень Ферми располагается в середине запрещенной зоны. Следовательно, определив ширину запрещенной зоны, можем рассчитать энергию Ферми:

                                              .                                                  (3.4)

4. Приборы и оборудование

Установка выполнена в виде двух функционально законченных блоков: блока управления и индукции (БУИ) и блока нагревателя (БН). Общий вид установки показан на рис. 4.1.

Рис. 4.1

На передней панели БУИ размещены органы управления, позволяющие включать и отключать нагреватель и вентилятор, а так же фиксировать показания температуры и сопротивления. На блоке нагревателя имеются переключатели для переключения типа образца (металл – 1, сплав с низким температурным коэффициентом сопротивления – 2, полупроводник–3). Цифрами обозначены следующие ручки управления установкой: 1 – клавиша «СТОП ИНД» – фиксация показаний, 2 – клавиша «Нагрев» – включение и выключение нагревателя, 3 – клавиша «вент» – включение и выключение вентилятора в блоке нагревателя, 4 – переключатель типов образцов,     5 – клавиша «сеть». Температура и сопротивление образца контролируются по индикаторам « оС » и «Ом, кОм, МОм». Для фиксации показаний температуры и сопротивления необходимо нажать клавишу 1, при этом на индикаторах установится значение, соответствующее моменту нажатия. Фактическое значение этих величин соответствует отжатому положению клавиши 5 «СТОП ИНД». Для нагрева образцов необходимо нажать клавишу 3 «Нагрев». При включенном нагревателе на панели загорается индикатор «Нагрев». Пределы измерения устанавливаются автоматически.

5. Порядок выполнения работы

  1.  Включить тумблер «Сеть» на БУИ и нажать клавишу «Сеть» на БН. При этом должны загореться индикаторы «Сеть».
    1.  Переключить тумблер 4 на БН в положение 1, т. е. подключить металлический образец.
      1.  Включить нагрев образца клавишей 2 «Нагрев» и снимать показания по индикатору температуры.
        1.  Снять показания индикаторов температуры и сопротивления с шагом 5о – 10о С до максимальной температуры 120о С. Результаты занести в табл. 5.1.
        2.  По достижении 120о С выключить нагрев образца клавишей 2 и нажать клавишу 3 «вент».
        3.  Повторить пункты 3, 4, занося данные в табл. 5.2, для положений 2, 3 тумблера 4 на БН.

7. Нажатием тумблера и клавиши “Сеть” отключить установку.

Таблица 5.1

Номер показания

1

2

3

4

t, о С

R, Ом

Таблица 5.2

Номер показания

1

2

3

4

t, о С

Т  - 1, К - 1

R, кОм

Ln R

6. Обработка результатов измерений

1. По данным табл. 5.1 построить зависимость R = f(T). Экстраполяцией определить значение R0 рис. 6.1.

Рис.6.1

2. По формуле (3.1) вычислить значение температурного коэффициента сопротивления металла. По известным табличным значениям коэффициента определить тип металла и оценить погрешность его определения.

Таблица 6.1

Температурный коэффициент сопротивления металлических проволок (при 18 оС)

Вещество

α ∙ 10 4

Алюминий

Вольфрам

Железо (0,1 % С)

Золото

Латунь

Манганин (3 % Ni, 12 % Mn, 85 % Cu)

Медь

Никель

Константан (40 % Ni, 1,2 % Mn, 58,8 % Cu)
Нихром (67,5 % Ni, 1,5 % Mn, 16 % Fe, 15 % Cr)

Олово

Платина

Свинец

Серебро

Цинк

38

51

62

40

10

0,02 – 0,5

42,8

27

0,4 – 0,1

1,7

45

38

43

40

37

 

3. По результатам вычислений, сведенных в табл. 5.2, построить график Ln R = f (1/T) рис. 6.2.

Рис. 6.2

4. По виду графика Ln R = f (1/T) определить тип полупроводника (собственный или примесный). Выделить прямолинейные участки    рис. 6.2.

5. По формулам (3.2) – (3.4) рассчитать ширину запрещенной зоны, энергию ионизации атомов примеси (для примесного полупроводника), энергию Ферми (для собственного полупроводника).

7. Требования к технике безопасности

а) ознакомиться с устройством установки, принципом действия;

б) убедиться, что установка заземлена;

в) убедиться в исправности сетевых шнуров;

г) при работе установки происходит нагрев печи до 125оС. Вскрытие печи категорически запрещается.

8. Требования к отчету

Отчет по лабораторной работе должен содержать:

а) расчетные формулы;

б) графики зависимостей R = f (T), Ln R = f (1/T);

в) определение по графику R = f (T) значения R0;

г) вычисление значения α и определение типа металла; расчет ΔE, ΔE/ и энергии Ферми;

д) определение по виду графика LnR = f (1/T) типа полупроводника

9. Контрольные вопросы

1. Объяснить с точки зрения зонной теории различное поведение электропроводности металлов и полупроводников при изменениях температуры.

2.  Чем отличается собственная проводимость от примесной?

3. Как по виду графика Ln R = f (1/T) определить тип полупроводника?

4.  Что такое ширина запрещенной зоны?

5. Что характеризует температурный коэффициент сопротивления металла?

Список литературы

  1.  Савельев И.В. Курс общей физики. Кн. 5. – М.: Наука, Физматгиз. 1998. – 208 с.
  2.  Епифанов Г.И. Физика твердого тела. – М.: Высшая школа, 1977. – 287 с.

3. Трофимова Т. И. Курс физики. М. :Высшая школа, 1998.

                                                                          

5


 

А также другие работы, которые могут Вас заинтересовать

78030. История развития компьютерной техники 1950-1970 годов 55 KB
  Утверждение В.М. Глушкова о том, что С.А. Лебедев - независимо от ученых Запада - разработал принципы построения компьютеров с хранимой в памяти программой - принципиально важный момент. Именно хранение программы в оперативной памяти стало завершающим шагом в развитии первых компьютеров.
78031. ВЗАИМОДЕЙСТВИЕ СТРАТЕГИЙ РОССИИ И США НА БОЛЬШОМ БЛИЖНЕМ ВОСТОКЕ: ПРОБЛЕМЫ СОТРУДНИЧЕСТВА И СОПЕРНИЧЕСТВА 1.69 MB
  Совместные же усилия наших двух стран в преодолении последствий этой агрессии обусловили формирование новой системы отношений в регионе, практически сведя на нет риски масштабного военного взрыва между главными в прошлом антагонистами – Израилем и арабскими странами.
78032. Игра как средство повышения интереса к урокам русского языка 113 KB
  Система современного образования не активирует в достаточной степени внутренние мотивы учения. Она диктует ребёнку свои условия и не оставляет места для его вопросов. В результате школьник перестаёт их задавать, теряет интерес к окружающему миру и, соответственно, к обучению.
78034. Укрощение «фабрики бумаг» 59 KB
  Первый вопрос решается на стадии предпроектного исследования когда определяются численные характеристики потоков документов реально существующих в организации. Измерение документооборота Параметры описывающие документооборот в организации можно разделить на три основных класса: объем документооборота...
78036. РОСІЙСЬКА ПОЕЗІЯ 198.5 KB
  Упродовж срібного віку в російській поезії яскраво виявили себе чотири покоління поетів: бальмонтівське яке народилося в 60ті та на початку 70х років XIX ст. Розгром російської культури та поезії срібного віку був остаточно довершений восени 1922 р.
78038. Формирование жанрового мышления в условиях искусственного двуязычия 154 KB
  Формирование коммуникативной компетенции личности при овладении ею иностранным языком составляет предмет одного из наиболее перспективных направлений развития современной отечественной психолингвистики.