3792

Изучение закона вращательного движения при помощи маятника Обербека

Лабораторная работа

Физика

Изучение закона вращательного движения при помощи маятника Обербека Цель работы: нахождение с методом определения момента инерции тела, основанном на использовании закона вращательного движения, и определение момента инерции специального тела- маятн...

Русский

2012-11-07

39.5 KB

15 чел.

Изучение закона вращательного движения при помощи маятника Обербека

Цель работы: нахождение с методом определения момента инерции тела, основанном на использовании закона вращательного движения, и определение момента инерции специального тела- маятника Обербека.

Предметы и материалы: маятник Обербека, секундомер, линейка, штангенциркуль, груз.

Теория вопроса.

Момент инерции определяет меру инертных свойств тела по отношению к вращательному движению.

Для материальной точки момент инерции численно равен произведению массы точки на квадрат расстояния ее до оси вращения:

 J (1)

Моментом инерции твердого тела называется сумма моментов инерции всех материальных точек твердого тела:

 J (2)

Вычисление таких интегралов практически возможно только для тел симметричной формы при однородном распределении массы по объему тела. Поэтому часто момент инерции твердых тел определяется экспериментально , например , способом, использованным в данной работе. В качестве исследуемого тела здесь использован маятник Обербека.

Под действием момента силы М тело, момент инерции которого J приобретает угловое ускорение E в соответствии с основным уравнением динамики вращательного движения:

 М=JE  (3)

Выведем рабочую формулу для определения момента инерции тела на основе закона вращательного движения.

 

Угловое ускорение E тела связанно с линейным ускорением а точек, находящихся на расстоянии R от оси вращения, выражением:

 E=a/R (4)

Линейное ускорение а ,в свою очередь, получим из выражения:

  1.  a 

Где h-линейный путь точки за время ее движения t.

Подставив(5) в (4), найдем угловое ускорение тела:

 E (6)

Найдем момент силы М. В маятнике Обербека он создается к привязанной к шкиву на нити опускающейся гирей и равен произведению натяжения Т на радиус шкива R:

 M=TR (7)

Натяжение нити найдем из следующих рассуждний. На подвешенную к нити гирю массой m действует сила F, равная разности силы натяжения нити T и силы тяжести mg. Так как гиря движется вниз ускоренно, то следовательно mg больше T:

 F=mg-T (8)

Согласно второму закону Ньютона сила F вызывает ускорение a гири:

 F=ma (9)

Приравнивая правые части (8) и (9) , найдем:

 T=m(g-a) (10)

Из (7) и (10) имеем:

 M=m(g-a)R (11)

Или.с учетом (5):

 M (12)

Подставляя (12) и (6) в (3), находим момент инерции:

 J (15)

Проведя преобразования, окончательно получим:

 J (14)

h[м]

H’[м]

t[с]

R[м]

J

J

1

0.6

0.58

4.526

0.02

0.0131

0.00654

2

0.6

0.61

6.279

0.02

0.0259

0.00654

3

0.6

0.63

9.159

0.02

0.0561

0.00654

ср

0.6

0.61

6.655

0.02

0.00654

 Δ J=0,00654кг *м2

J1=1.0131 кг *м2 J2=0.0259 кг *м2 J3=0.0561 кг *м2

Вывод: мы определили момент инерции тела: для этого использовали закон вращательного движения и определили момент инерции специального тела - маятника Обербека.


 

А также другие работы, которые могут Вас заинтересовать

69001. ІНДИКАТОРНІ ЕЛЕКТРОННО-ПРОМЕНЕВІ ПРИЛАДИ 93 KB
  Конструкція та принцип роботи В електронно-променевій трубці ЕПТ електричний сигнал перетворює ться в світловий. Конструкція ЕПТ Під час попадання електричного променю на люмінофор з останнього вибиваються вторинні електрони. ЕПТ поділяються на три групи: осцилографічні індикаторні кінескопи.
69002. Шуми електронних приладів. Фізична природа шумів 186.5 KB
  Шуми або флюктуації є випадковими процесами. Виникають з подачею напруги живлення на електроди елементу. Їх можна прослуховувати через динамік на вході радіоприймача і підсилювача або побачити на екрані осцилог-рафа. Шуми накладаються на корисні сигнали та рівні постійних напруг і струмів живлення...
69003. P-n перехід у стані рівноваги. Утворення електронно-діркового переходу 342.5 KB
  Розглянемо напівпровідник н п який має дві прилеглих області: одна з провідністю nтипу друга pтипу. Оскільки концентрація дірок у дірковій області pp напівпровідника вище ніж в електронній pn а концентрація електронів у електронній області nn вище ніж у дірковій np між областями буде існувати...
69004. ФІЗИЧНІ ПРОЦЕСИ В р-n ПЕРЕХОДІ ПРИ ДІЇ ЗОВНІШНЬОЇ ЕЛЕКТРИЧНОЇ НАПРУГИ 105.5 KB
  Оскільки концентрація рухомих носіїв заряду в рп переході менша ніж в областях п та р напівпровідника опір рп переходу буде більший ніж опір області п та р тому можна вважати що вся напруга прикладається до рп переходу При дії зовнішньої напруги порушується рівновага між дифузійним і дрейфовим струмами в рп переході...
69005. Фізичні процеси в біполярних транзисторах з декількома p-n переходами 308 KB
  Для забезпечення інжекції вприскування дірок з емітера в базу необхідна пряма емітерна напруга. Це відбувається тому що товщина бази W значно менше дифузійної довжини вільного пробігу дірок LP. Колекторна напруга вибирається зворотною UК тому виникає екстракція втягування дірок із бази...
69006. БУДОВА, ПРИНЦИП РОБОТИ ТА СТАТИЧНІ ХАРАКТЕРИСТИКИ ПОЛЬОВОГО ТРАНЗИСТОРА З ІНДУКОВАНИМ КАНАЛОМ 141.5 KB
  При відсутності напруги UЗВ і за наявності напруги UСВ опір між стоком і витоком що визначається двома підключеними назустріч рn переходами великий а струм ІС дуже малий 109. З подачею напруги UЗВ 0 в напівпровіднику виникає електричне поле яке вилучає електрони поверхневого шару підложки...
69007. Параметри біполярного транзистора 364.5 KB
  Для оцінки можливостей застосування транзисторів використовують їх параметри. Параметри транзисторів це числа. Числені значення параметри можуть бути виміряні знайдені за статичними характеристиками або розраховані.
69008. Електронні структури з p-n одним переходом 297 KB
  Для отримання великої площі р n переходу використовують сплавну дифузійну і планарну технологію для малої площі точкову. Ємності р n переходу. Варікапи Поняття ємності переходу повязане з нагромадженням обємних зарядів. S площа переходу Рис.
69009. Відомості про електронні прилади апаратури телекомунікацій. Класифікація електронних приладів 113 KB
  До елементів РЕА які найчастіше зустрічаються відносять радіодеталі. Розглянемо основні показники якості електронних елементів. Параметри це величини які характеризують електричні властивості елементів та їх здатність протистояти дії середовища.