37933

ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА С ПОМОЩЬЮ ЗАКОНА ОМА

Лабораторная работа

Физика

Контрольные вопросы 11 Список литературы 11 ЛАБОРАТОРНАЯ РАБОТА № 45 ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА С ПОМОЩЬЮ ЗАКОНА ОМА Цель работы.1 Закон Ома Количественной мерой электрического тока служит сила тока скалярная величина определяемая электрическим зарядом проходящим через поперечное сечение проводника в единицу времени: . Для постоянного тока . Единица силы тока ампер 1 А = Кл с.

Русский

2013-09-25

199 KB

60 чел.

14

Содержание

1. Цель работы                                                       

4

2. Теоретическая часть

4

2.1 Закон Ома

4

2.2 Элементарная классическая теория электропроводности металлов

7

3. Требования к технике безопасности

8

4. Экспериментальная часть

9

4.1 Описание установки

9

4.2 Порядок выполнения работы

9

4.2.1 Определение неизвестного сопротивления

9

4.2.2 Определение ЭДС и внутреннего сопротивления источника

10

5. Контрольные вопросы

11

Список литературы

11


ЛАБОРАТОРНАЯ РАБОТА
№ 45

ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА

С ПОМОЩЬЮ ЗАКОНА ОМА

  1.  Цель работы.

Изучение закона Ома для однородного и неоднородного участков цепи.

2. Теоретическая часть. 

2.1 Закон Ома

Количественной мерой электрического тока служит сила тока - скалярная величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

.

Ток, сила и направление которого с течением времени не изменяется, называется постоянным. Для постоянного тока

.

Единица силы тока - ампер (A) 1 А = Кл/с. Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

.

Плотность тока - величина векторная. Направление вектора  совпадает с направлением тока. Сила тока через произвольную поверхность  определяется как поток вектора :

.

Ток возникает при условии, что внутри проводника существует электрическое поле, под действием которого положительные заряды будут смещаться по направлению вектора напряженности  поля, отрицательные - против поля. Таким образом, наличие свободных электрических зарядов и электрического поля - два необходимых условия для возникновения тока. Однако, если на носители тока действуют только силы электростатического поля, то происходит перемещение носителей тока (положительных) от точек с большим потенциалом к точкам с меньшим потенциалом, что приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие устройства, способного создавать и поддерживать разность потенциалов за счет работы сил не электрического происхождения. Такие устройства называются источниками тока. Силы не электрического происхождения, действующие на заряды со стороны источника тока, называются сторонними.

Природа сторонних сил может быть различной. В гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе - за счет механической энергии вращения ротора генератора и т.д.

Сторонние силы, перемещая электрические заряды против действия сил электростатического поля, совершают работу. Физическая величина, определяемая работой сторонних сил при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) e, действующей в цепи:

Эта работа совершается за счет энергии, затрачиваемой в источнике тока, поэтому величину e называют также электродвижущей силой источника тока, включенного в цепь.   

Работа сторонних сил над зарядом на участке 1-2 равна:

Разделив эту работу на  q, получим ЭДС, действующую на данном участке:     

Аналогичный интеграл, вычисленный для замкнутой цепи, дает ЭДС, действующую в этой цели:

Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил.

Кроме сторонних сил, на заряд действуют силы электростатического поля. Следовательно, результирующая сила, действующая в каждой точке цепи на заряд q, равна

.

Работа, совершаемая этой силой над зарядом q на участке цепи 1-2, определяется выражением:

Физическая величина, численно равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного положительного заряда, называется падением напряжения или просто напряжением U на данном участке цепи.

Разделив последнее соотношение на q, получим:

.

Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует ЭДС, то есть сторонние силы отсутствуют.

Участок цепи, на котором не действуют сторонние силы, называется однородным. Для однородного участка цепи

,

то есть напряжение совпадает с разностью потенциалов на концах участка. Согласно закону Ома для однородного участка цепи:

,   (2.1)

где R - электрическое сопротивление проводника. Величина  G = 1/R называется электрической проводимостью проводника.

Сопротивление проводника зависит от его размеров и формы, а также от материала, из которого изготовлен проводник. Для цилиндрического проводника сопротивление определяется соотношением

,    (2.2)

где r - удельное электрическое сопротивление,  - длина проводника,  S - площадь его поперечного сечения. Соотношение (2.1) представляет собой закон Ома в интегральной форме.

Закон Ома можно представить в дифференциальной форме. Подставив в выражение (2.1) соотношение (2.2), получим

.   (2.3)

Величина s = 1/r носит название удельной электрической проводимости вещества. Учитывая, что  напряженность электрического поля в проводнике, a  - плотность  тока, соотношение (2.3) можно представить в виде

.   (2.4)

Последнее выражение представляет собой закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. В случае неоднородного участка цепи в последнем соотношении под  понимается суммарная напряженность электростатического поля и электрического поля сторонних сил.

2.2. Элементарная классическая теория электропроводности металлов.

Основателями классической электронной теории проводимости металлов являются Друде и Лоренц, которые, основываясь на экспериментальных данных, предполагали, что внутри пространственной решетки, образованной ионами металла, имеется значительное количество свободных электронов. Участвуя в тепловом движении, электроны образуют как бы электронный газ, заполняющий пространство между ионами, и ведут себя подобно молекулам идеального газа. В отсутствие электрического поля электроны перемещаются в проводнике с некоторой средней скоростью . В промежутке между соударениями они движутся свободно, пробегая путь  (средняя длина свободного пробега), Однако, в отличие от молекул идеального газа, длина свободного пробега электронов определяется не соударениями их друг с другом, а столкновениями с ионами кристаллической решетки металла.

При включении электрического поля на хаотическое движение электронов со скоростью  накладывается упорядоченное перемещение зарядов в направлении электрического поля, происходящее со скоростью . Таким образом, скорость электронов будет равна  и средняя скорость зарядов  определяется как

,

так как  (тепловое движение - хаотическое).

Со стороны электрического поля на электроны действует сила   поэтому в промежутке между двумя столкновениями с ионами кристаллической решетки, электроны движутся с постоянным ускорением, равным , и к концу пробега приобретают скорость .

При соударении с ионом вся приобретенная электроном энергия передается иону, и скорость электрона при этом падает до нуля. Если - время между двумя последовательными соударениями электрона с ионами решетки, то

.

Так как ,то

.

Скорость направленного движения электронов  изменяется за время пробега линейно. Поэтому среднее значение ее равно половине максимального:

.

Направленное движение электронов образует ток, плотность которого равна

,

где n - число электронов в единице объема. Плотность тока оказалась пропорциональной напряженности поля, то есть, мы получили закон Ома в дифференциальной форме (2.4)

,

где - удельная электрическая проводимость металла.

 

3. Требования к технике безопасности.

3.1 Прежде чем приступить к работе, внимательно ознакомьтесь с электрической схемой, оборудованием и заданием.

3.2 Перед включением установки в сеть проверьте, чтобы тумблеры "сеть" в источниках питания находились в положении "выкл.".

3.3 По окончании работы отключите питание установки и приведите в порядок рабочее место.

3.4 Не оставляйте без присмотра лабораторную установку.

4. Экспериментальная часть.

4.1 Описание установки

Электрическая схема установки изображена на рисунке 4.1. Установка включает в себя набор источников напряжения e1, e2, e3, набор известных сопротивлений R1, R2, R3, R4, R5, известное сопротивление RX и электроизмерительные приборы

R1  = 590 Ом

R2  = 360 Ом 

R3  = 160 Ом

R4  = 60 Ом

R5  = 24 Ом

Рис. 4.1

4.2 Порядок выполнения работы

4.2.1 Определение неизвестного сопротивления

1 .Установить пределы измерений тока и напряжения 500 mA и 50 В, для чего нажать соответствующие кнопки на панели прибора.

2. Включить прибор, для чего повернуть ручку 1 на панели прибора вправо в положение "источник 1", ручку "нагрузка" поставить в положение 5 (к схеме подключено сопротивление R5).

3. Снять показания амперметра и вольтметра и по закону Ома для однородного участка цепи найти неизвестное сопротивление Rx. Данные занести в таблицу 7.1.

4. Аналогично провести измерения Rx при включенных источниках 2,3. Данные занести в таблицу 4.1.

5. Рассчитать среднее значение Rx , а также относительную и абсо-лютную погрешности измерения Rx  . Класс точности приборов g  = 0,5.

Таблица 4.1

Источник

R(Ом)

J(A)

U(B)

Rx (Ом)

Rxcp (Ом)

DRx(Ом)

1

2

3

4.2.2 Определение ЭДС и внутреннего сопротивления источника.

1. Включить источник 1. Последовательно подключать к схеме сопротивления R1, R2, R3, R4, R5, измеряя каждый раз ток в цепи. Данные занести в таблицу 4.2.

Таблица 4.2

Нагрузка

J (A)

Источник 1

Источник 2

Источник 3

R1

R2

R3

R4

R5

2. Взять пару любых комбинаций сопротивлений  R1, R2, R3, R4, R5, например, R1 и R2, записать дважды закон Ома и решить подученную систему уравнений относительно e1  и  r1:

    и .

3. Взять другие пары сопротивлений и рассчитать при этих сопротивлениях значения e1 и r1. Всего получить не менее трех значений e1 и r1, усреднить полученные значения и занести их таблицу 4.3.

Таблица 4.3

1

2

3

r1

r2

r3

4. Проделать то же самое для источников 2,3. Данные занести в таблицу 4.3.

5. Рассчитать относительную погрешность измерений.

5. Контрольные вопросы

1. Какая физическая величина называется силой тока, плотностью тока? Каковы единицы их измерения?

2. Какие условия необходимы для поддержания тока в цени?

3. Дайте определение электродвижущей силы источника. В каких единицах она измеряется?

4. Что называется напряжением на данном участке цепи?

5. Как формулируется закон Ома для однородного участка цепи, для неоднородного участка?

6. От каких величин зависит сопротивление проводника ? Запишите формулу для сопротивления.

7. Каковы основные положения классической теории электропроводности металлов?

8. Как записывается закон Ома в дифференциальной форме?

Список литературы

1. Савельев И. В. Курс общей физики. Кн. 2 - М.: Наука, 1998, 336 с.

2.Трофимова Т.Н. Курс физики. - М.: Высшая школа, 1988, 512 с.


Составитель Хайретдинова А.К.

ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторной работе № 45

по курсу общей физики

Редактор

ЛБ №

Подписано к печати                     Формат 80 х 64 1/16   

Бумага оберточная. Печать плоская. Усл. Печ. Л. 2,5.

Усп.-кр.-отт,            Уч-изд.л.           . Тираж           экз.      

3аказ №              . Бесплатно.

Уфимский Государственный Авиационный Технический Университет

Уфимская типография № 2 Министерства печати и массовой информации

Республики Башкортостан

450000, Уфа-центр, ул. К.Маркса, 12


 

А также другие работы, которые могут Вас заинтересовать

42279. Настройка статических маршрутов 58.5 KB
  Щелкните ПК офиса филиала BOpc и перейдите по ссылкам Desktop Commnd Prompt . Запишите IPадрес ПК офиса филиала BOpc и адрес шлюза по умолчанию. Адрес шлюза по умолчанию это IPадрес интерфейса FstEthernet для Офиса филиала BrnchOffice.1 адрес шлюза по умолчанию для локальной сети Офиса филиала BrnchOffice в запросе команды в ПК офиса филиала BOpc.
42280. Исследование индуктивно-связанных цепей 288.5 KB
  Целью работы является экспериментальное определение параметров двух индуктивно связанных катушек и проверка основных соотношений индуктивно связанных цепей при различных соединениях катушек. Подготовка к работе Схема замещения двух индуктивно связанных катушек удовлетворительно учитывающая электромагнитные процессы в диапазоне низких и средних частот представлена на рис. 1 где L1 R1 и L2 R2 индуктивности и сопротивления соответственно первой и второй...
42281. ЗАКОНЫ СТОЛКНОВЕНИЙ 931 KB
  Обозначим массы шаров и скорости шаров до удара и а скорости после удара и рис. 5 Скорости шаров после удара получим умножив 5 на и вычтя результат из 3 а затем умножив 5 на и сложив результат с 3: . Рассмотрим неупругое столкновение двух шаров массами и скорости которых до удара и . Установка предназначена для измерения скорости двух подвижных...
42282. ОСНОВНОЕ УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ВОКРУГ НЕПОДВИЖНОЙ ОСИ 981 KB
  Изучение динамики вращательного движения твердого тела. Исследование зависимости угла поворота твердого тела от времени, экспериментальная проверка основного уравнения динамики вращательного движения, определение момента инерции твердого тела как коэффициента пропорциональности в основном уравнении
42283. ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ ПРУЖИНЫ 2.68 MB
  Если пружина находится в равновесии то силы действующие на любую часть пружины уравновешены рис. По закону Гука сила упругости пропорциональна деформации пружины : 1 где проекция силы упругости на ось направленную вдоль оси пружины рис. Рис. Одной из упругих характеристик...
42284. ЦЕНТРОБЕЖНАЯ СИЛА 843 KB
  Исследование зависимости величины центробежной силы от массы тела угловой скорости и расстояния до оси вращения. Вместе с платформой вращается привязанная к оси вращения небольшая тележка. Рассмотрим небольшой груз массы m подобно тележке привязанный к оси вращения нерастяжимой невесомой нитью и вращающийся вместе с платформой.1 этот груз схематически изображён слева от оси вращения.
42285. ИЗУЧЕНИЕ КОЛЕБАНИЙ СВЯЗАННЫХ МАЯТНИКОВ 1.67 MB
  Измерение собственных частот колебаний и частоты биений экспериментальная проверка соотношения между этими частотами. Теоретическая часть Биения Гармоническими колебаниями называются колебания которые описываются формулой 1 где координата колеблющейся точки амплитуда колебаний циклическая частота период колебаний начальная фаза. Амплитуда колебаний и начальная фаза определяются начальными условиями:...
42286. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА 1.78 MB
  Теоретическая часть Момент инерции это величина зависящая от распределения масс в теле и являющаяся мерой инертности тела при вращательном движении. Момент инерции тела относительно оси вращения определяется выражением 1 где элементарные точечные массы на...
42287. КОЛЕБАНИЯ СТРУНЫ 6.2 MB
  Исследование зависимости частоты колебаний струны от силы натяжения длины и линейной плотности материала струны. Оборудование: Установка включающая в себя устройство для натяжения струны с динамометром измерительную линейку с подвижными порожками электрическую лампочку с держателем фотоэлемент низкочастотный усилитель осциллограф и универсальный счетчик; резиновый молоток; набор струн. Колебания струны как пример стоячей волны На практике стоячие волны возникают при отражении волн от преград: падающая на преграду волна и бегущая ей...