37937

Изучение вынужденных колебаний в электрическом контуре

Лабораторная работа

Физика

В теоретической части методических указаний изложены условия возникновения вынужденных колебаний в электрическом контуре выведено дифференциальное уравнение этого вида колебаний рассмотрены явления резонансных тока и напряжения. Для осуществления вынужденных колебаний в контур включают источник тока обладающий периодически изменяющейся ЭДС рис. в каждый момент времени сила тока во всех сечениях цепи одинакова. Перейдя от тока I к заряду q и введя обозначения: ω02=1 LС ...

Русский

2013-09-25

438.5 KB

26 чел.

Министерство образования Российской Федерации

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

В ЭЛЕКТРИЧЕСКОМ  КОНТУРЕ

Методические указания

к лабораторной работе № 49

по курсу общей физики

УФА 2003

Министерство образования Российской Федерации

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра общей физики

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

В ЭЛЕКТРИЧЕСКОМ  КОНТУРЕ

Методические указания

к лабораторной работе № 49

по курсу общей физики

Уфа 2003

Составитель   В. Р. Строкина

УДК   537.6

ББК    22.33

Изучение вынужденных колебаний в электрическом  контуре:

Методические указания к лабораторной  работе № 49 по курсу общей физики        

/Уфимск. гос. авиац. техн. ун-т; Сост. В. Р. Строкина. – Уфа, 2003. – 11с.   

В теоретической части методических указаний изложены условия возникновения вынужденных колебаний в электрическом контуре, выведено дифференциальное уравнение этого вида колебаний, рассмотрены явления резонансных тока и напряжения. В экспериментальной части описана лабораторная установка, приведён порядок выполнения работы, правила техники безопасности, контрольные вопросы.

Предназначены для студентов, изучающих явления электромагнетизма в

лабораторном практикуме по курсу общей физики.

 Табл. 1. Ил. 5. Библиогр.: 3 назв.

   Рецензенты:    С. А. Шатохин

                                 Т. М. Крайнова

          © Уфимский государственный        авиационный технический университет, 2003


Содержание

                            

  1.  Цель работы…………………………………………………………………….4
  2.  Теоретическая часть……………………………………………………………4

2.1. Вынужденные колебания в электрическом контуре. Явление резонанса..4             

  1.  Экспериментальная часть……………………………………………………..8

3.1. Приборы и оборудование…………………………………………………....8

3.2. Требования по технике безопасности………………………………………9

3.3. Порядок выполнения работы………………………………………………..9

3.4. Требования к отчёту………………………………………………………...10

  1.  Контрольные вопросы………………………………………………………..10

Список литературы………………………………………………………………10

                                                               

ЛАБОРАТОРНАЯ РАБОТА  № 49

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

В ЭЛЕКТРИЧЕСКОМ  КОНТУРЕ

  1.  Цель работы

Целью данной работы является  изучение вынужденных электромагнитных колебаний в электрическом контуре, определение резонансной частоты и добротности контура.

  1.  Теоретическая часть

2.1. Вынужденные колебания в электрическом контуре

    Явление резонанса

Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи, напряжения, электрические и магнитные поля) изменяются периодически. Различают свободные, затухающие и вынужденные колебания. Электромагнитные колебания могут возникнуть в цепи, содержащей индуктивность L и ёмкость С. Такая цепь называется колебательным контуром.  

Электрическое сопротивление R любого реального контура отлично от нуля. Поэтому для получения незатухающих электромагнитных колебаний необходимо в контур подводить энергию, компенсирующую потери на "ленц–джоулево" тепло. Колебания, возникающие в этом случае, называются вынужденными. Для осуществления вынужденных колебаний в контур включают источник тока, обладающий периодически изменяющейся ЭДС

(рис. 2.1).

      Токи в электрическом контуре являются квазистационарными, т. е. в каждый момент времени сила тока во всех сечениях цепи одинакова. Мгновенные значения квазистационарных токов подчиняются закону Ома и вытекающим из него законам Кирхгофа.

Второй закон Кирхгофа для колебательного контура имеет следующий вид:                              ,                        (2.1)

где RI, ,  - падения напряжения соответственно на активном сопротивлении, индуктивности, ёмкости.

       Перейдя от тока I к заряду q и введя обозначения:       

ω02=1/,   ,                                                (2.2)

получаем  дифференциальное уравнение вынужденных колебаний:

,                                      (2.3)

где  - коэффициент затухания, ω0 - собственная частота контура.

      Частное решение этого уравнения имеет вид:

                                                 q =qmcos(ωt-ψ),                                                 (2.4)

где                                        qm =,                                      (2.5)

                                                    .                                             (2.6)      

      Вынужденные колебания в контуре совершаются с частотой вынуждающей ЭДС.

      Подстановка в выражения (2.5) и  (2.6) значений     и   ω0   даёт:

qm =,                                            (2.7)

.                                                  (2.8)

Величина  называется полным сопротивлением контура.

      Продифференцировав выражение (2.4) по времени, найдём силу тока в контуре при установившихся вынужденных колебаниях:

Im= - ω qm sin(ω t - ψ + π/2),                                     (2.9)

где                                 Im=ω qm=.                                 (2.10)

   Разделив выражение (2.4) на ёмкость С, получим напряжение на  конденсаторе:

q = (qm /c) cos (ω t - ψ)=Uсm cos (ω t - ψ),                       (2.11)

где

Uст .                             (2.12)

       Сопоставление формул (2.10) и (2.12) показывает, что напряжение на ёмкости отстаёт по фазе от  силы тока на угол π/2.

       Амплитуды силы тока и напряжения, как видно из формул (2.10)             и (2.12), зависят не только от параметров контура (R, L и C) и амплитуды εm, но и от частоты вынуждающей ЭДС. При некоторых частотах ωрез  в контуре наступает резкое возрастание амплитуды силы тока и напряжения. Эти явления называют соответственно резонансом тока и резонансом напряжения.  Из формулы (2.10) видно, что при условии:

,                                              (2.13)

амплитуда тока достигает максимального значения. Следовательно, резонансная частота для силы тока совпадает с собственной частотой   контура ω0:                                  ωIрез = ω0                                         (2.14)

      Резонансные кривые для силы тока изображены на (рис. 2.2). Отрезок, отсекаемый резонансными кривыми на оси Im , равен нулю; при постоянном напряжении установившийся ток в цепи с конденсатором течь не может. Максимум при резонансе получается тем выше и острее, чем  меньше ,   т. е. чем меньше активное сопротивление и больше индуктивность контура.

Резонансная частота для заряда qm и напряжения на конденсаторе Uст равна:   

                                 .                        (2.15)

       Резонансные кривые для Uст изображены на рис. 2.3 (резонансные кривые для qm имеют такой же вид).

                          

 

       При   резонансные кривые стремятся к Ucт=Um – напряжению, возникающему на конденсаторе при подключении его к источнику постоянного напряжения Um.

      “Остроту” резонансной кривой можно охарактеризовать с помощью полуширины этой кривой, равной Δω /ωрез, где Δω - разность значений         ω2 и ω1,  соответствующих Im = Im max /    (рис. 2.4).  

   Относительная полуширина резонансной кривой колебательного контура равна:      

             ,                                                      (2.16)

       Отношение резонансной частоты к удвоенному коэффициенту затухания электромагнитных колебаний в контуре называется добротностью Q колебательного контура:                      

.                                                 (2.17)

        Из выражений (2.16) и (2.17) следует, что относительная полуширина резонансной кривой обратно пропорциональна его добротности:

.                                                         (2.18)

3. Экспериментальная часть

3.1. Приборы и оборудование

1. PQ  звуковой генератор.

2. PO – электронный осциллограф.

3. ФПЭ – 11 – кассета.

4. МС – магазин сопротивлений.

5. МЕ – магазин ёмкостей.

       Исследование явления резонанса в электрическом контуре производится по схеме, представленной на рис. 3.1.

                                      PQ                                                             PO

                                                                                         X                       Y

Рис. 3.1

3.2. Требования по технике безопасности

  1.  Проверить правильность сборки схемы. В случае сомнения обратиться к преподавателю.
  2.  Проверить наличие заземления.
  3.  Во время работы нельзя прикасаться к оголённым участкам схемы, предварительно не обесточив установку.

3.3. Порядок выполнения работы

Задание: снятие резонансных кривых тока и напряжения. Определение резонансной частоты и добротности контура.

1.  Включить лабораторный стенд и приборы.

2. Получить на экране осциллографа устойчивое изображение синусоиды.

3. Установить ёмкость магазина 10-2 мкФ, сопротивление магазина –100 Ом.

  1.  Переключатель “множитель частоты” на панели звукового генератора установить в положение 10-5.
  2.  Переключатель усилителя сигналов (V/дел.) установить в положение, удобное для наблюдения сигналов частотой  106 Гц.

6. Измерить амплитуду синусоидального напряжения на экране осциллографа в сантиметрах при различных частотах в диапазоне от 106 до 107 Гц. Частоту изменять  с интервалом (1-2) 106 Гц; вблизи резонанса – с интервалом 0,2 106Гц.

7. Перевести результаты измерений в вольты. Для этого результаты измерений в сантиметрах надо умножить на показание переключателя усиления сигналов (V/см).

  1.  Данные занести в табл. 5.1.                              

Таблица 5.1

υ, Гц

Uст, см

     Uст, В

Im, мА

  1.  Рассчитать амплитуду тока в колебательном контуре по формуле Im=2πυCUст. Расчёт произвести для каждого значения частоты, результаты вычислений занести в табл. 5.1 в миллиметрах.

10. Построить на одном графике зависимость Im = Im (υ), на другом графике зависимость  Uст= Uст(υ). Определить на графиках частоты, при которых наблюдается резонанс тока и напряжения.

11. Используя резонансные кривые для тока, определить относительную полуширину кривой, равную Δυ/υрез. По формуле    определить добротность контура.

3.4. Требования к отчёту

Отчёт по лабораторной работе должен содержать:

1. Название и номер лабораторной работы.

2. Цель работы.

3. Основные формулы для выполнения измерений и расчётов.

4. Таблицу с результатами измерений и вычислений.

5. Формулы для расчёта погрешностей.

6. Расчёт погрешностей.

7. Выводы к работе.

4. Контрольные вопросы

  1.  Какие величины в электрическом контуре изменяются периодически?
  2.  Какие колебания называются вынужденными?
  3.  Вывести дифференциальное уравнение вынужденных колебаний?
  4.  Какие токи называются квазистационарными?
  5.  Почему в случае вынужденных колебаний возможно возникновение явления резонанса?
  6.  Чем отличаются резонансные кривые для тока и напряжения?
  7.  Как с помощью резонансной кривой определить добротность контура?

Список литературы

  1.  Савельев И.В. Курс общей физики. Т. 2. – М.:Наука. Физмат, 1998.
  2.  Деблафр А. А., Яворский Б. М. Курс физики. – М.: Высшая школа, 1999.
  3.  Калашников С.Г. Электричество. – М.: Наука, 1985.


Составитель СТРОКИНА Венера Рамазановна

ИЗУЧЕНИЕ  ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

В ЭЛЕКТРИЧЕСКОМ КОНТУРЕ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторной работе № 49

по курсу общей физики

Редактор Соколова О.А.

Подписано в печать 16.05.2003. Формат 60 х 84 1/16.

Бумага оберточная. Печать плоская. Гарнитура Times New Roman Cyr.

Усл. печ. л. 0,7. Усл.-кр.-отт. 0,7. Уч-изд.л 0,6.

Тираж 350 экз. Заказ №  .

Уфимский государственный авиационный технический университет

Редакционно-издательский комплекс УГАТУ

450000, Уфа-центр, ул. К. Маркса, 12


 

А также другие работы, которые могут Вас заинтересовать

71275. Токарные автоматы и полуавтоматы 1.77 MB
  Токарные автоматы и полуавтоматы предназначены для изготовления деталей с использованием нескольких инструментов в крупносерийном и массовом производстве. Автомат - станок, автоматически и многократно выполняющий все рабочие и вспомогательные элементы цикла обработки детали, кроме наладки.
71277. Понятие «способности». Структура и виды способностей 2.29 MB
  Структура и виды способностей Проблема способностей всегда волновала умы и с теоретической и с практической стороны. Встречая проявления ярких способностей мы удивляемся и восхищаемся ими. Почти каждому хочется узнать потенциал своих способностей.
71278. Обработка сталей и чугунов резанием 169 KB
  Пластичные сплавы обрабатываются труднее чем менее пластичные сплавы обладающие большей теплопроводностью и теплоемкостью легче так как температура резания при обработке этих сплавов ниже. Алюминиевые сплавы.
71279. Понятие о темпераменте. Физиологические основы темперамента 167.02 KB
  Темперамент выступает в качестве общей основы многих личностных характеристик человека и прежде всего характера. Физиологические основы характера В психологии понятие характер греч. Понятие характера весьма различается в теоретических построениях отдельных авторов.
71280. Воля. Общая характеристика волевых действий 85 KB
  Воля — это сознательное регулирование человеком своего поведения и деятельности, выраженное в умении преодолевать внутренние и внешние трудности при совершении целенаправленных действий и поступков. Главная функция воли заключается в сознательной регуляции активности в затрудненных условиях жизнедеятельности.
71281. ПСИХОЛОГИЯ ПОЗНАВАТЕЛЬНЫХ ПРОЦЕССОВ 193.42 KB
  По своей направленности на объект различают следующие формы внимания: сенсорное направлено на восприятие интеллектуальное направлено на мышление работу памяти и моторное направлено на движение. Ощущения и восприятия без включения памяти в акт познания переживались бы человеком как впервые...
71282. Общее представление о психологии как науке 50.5 KB
  Наличием души пытались объяснить все непонятные явления в жизни человека. Основным методом изучения считалось наблюдение человека за самим собой и описание фактов. Задача психологии – ставить эксперименты и наблюдать за тем что можно непосредственно увидеть а именно поведением...