37945

НАКЛОННЫЙ МАЯТНИК

Лабораторная работа

Физика

Изучение силы трения качения. Определение коэффициента трения качения. Со стороны поверхности на тело действует сила трения FТР. Тело скользит по поверхности со скоростью на него действует сила трения совершающая отрицательную работу вследствие чего полная механическая энергия системы уменьшается т.

Русский

2013-09-25

252 KB

15 чел.

Содержание

1. Цель работы……………………………………………………………4

2. Теоретическая часть…………………………………………………..4

3. Экспериментальная часть…………………………………………….6

3.1. Описание установки…………………………………………………8

3.2. Требования по технике безопасности……………………………...9

3.3. Порядок выполнения работы……………………………………...10

4. Контрольные вопросы………………………………………………..11

Список литературы……………………………………………………..11


ЛАБОРАТОРНАЯ  РАБОТА № 14

НАКЛОННЫЙ МАЯТНИК

1. Цель работы

1.1. Изучение силы трения качения.

1.2. Определение коэффициента трения качения.

2. Теоретическая часть

Рассмотрим движение шара массой m и моментом инерции Jc по горизонтальной поверхности под действием силы F(x), приложенной к центру масс С, причем предположим, что тело и поверхность абсолютно жесткие, т.е. тело не деформируется, а касается поверхности в одной точке О (рис. 2.1.).

Рис. 2.1.

Со стороны поверхности на тело действует сила трения FТР. Точки шара участвуют в двух видах движения: центр масс С движется поступательно вдоль оси х, точки поверхности шара вращаются вокруг горизонтальной оси, проходящей через центр масс.

Уравнение движения шара на основе законов поступательного и вращательного движения имеют вид:

,                                        (2.1)

,                                                    (2.2)

где – ускорение центра масс; – угловое ускорение шара;           М – момент сил, действующих на тело, относительно оси, проходящей через центр масс; – момент инерции шара относительно оси, проходящей через точку С. Момент силы F относительно точки С равен нулю, следовательно:

.                                       (2.3)

По определению, , , где ω–угловая скорость;              υс – линейная скорость центра масс.

Предположим, что шар движется по поверхности со слабым проскальзыванием. В этом случае скорость точки касания (точки О  на рис. 2.1), являющейся скоростью проскальзывания, будет равна

,                                              (2.4)

причем .

Тело скользит по поверхности со скоростью , на него действует сила трения, совершающая отрицательную работу, вследствие чего полная механическая энергия системы уменьшается, т.е.

,                                         (2.5)

где Е полная механическая энергия равная

.                              (2.6)

Продифференцировав последнее соотношение и учитывая, что  и что , получим

.

Оно аналогично уравнению движения материальных точек

,

m* – масса, равная

,

а  – сила трения качения:

.                                      (2.7)

На практике часто реализуется случай, когда сила трения качения не зависит от скорости тела. В этом случае скорость проскальзывания пропорциональна скорости тела, т.е.

   и    .                        (2.8)

Обычно коэффициент пропорциональности.

Сила трения скольжения определяется силой нормальной реакции опоры N и коэффициентом трения скольжения μ:

.

Учитывая (2.8), получим для силы трения качения

,                                (2.9)

где  – коэффициент трения качения.

3. Экспериментальная часть

В данной работе коэффициент трения качения определяется при изучении движения наклонного маятника. Наклонный маятник представляет собой закрепленный на длинной тонкой нити шар, который может кататься по наклонной плоскости (рис. 3.1, а). Если шар вывести из положения равновесия (ось ОО /)  на угол α и затем отпустить, то он будет колебаться, катаясь около положения равновесия. Из-за трения колебания будут затухающими. Получим формулу, связывающую уменьшение амплитуды колебаний с коэффициентом трения скольжения μ.

При максимальном отклонении маятника от положения равновесия его скорость становится равной нулю, следовательно, и кинетическая энергия тоже будет равна нулю. Эти точки называются точками поворота. В них маятник останавливается, поворачивается и движется обратно. В точках поворота полная механическая энергия маятника равна его потенциальной энергии. Как указывалось выше, из-за трения происходит диссипация механической энергии. Уменьшение потенциальной энергии от одной точки (А) до другой точки (В) (рис. 3.1) равна работе силы трения на пути АВ. Пусть в точке А нить маятника составляет угол α с осью ОО /, а в точке В – угол (α-Δα), т.е. за половину периода угол отклонения маятника уменьшился на Δα. Точка В расположена ниже точки А, поэтому потенциальная энергия в точке В меньше, чем в точке А. Потеря высоты за половину периода составляет Δh, следовательно, изменение потенциальной энергии равно

.                                               (3.1)

Определим Δh. Спроектируем точки А и В на ось ОО / (рис. 3.1, в), получим соответственно точки А /, В /.

Рис. 3.1

Из рис. 3.1. а) видно, что

,                   (3.2)

где l – длина нити.

Из рисунка 3.1, б) следует, что

.

С учетом (3.2) последнее соотношение подставляем в (3.1):

                  .               (3.3)

С другой стороны, изменение потенциальной энергии равно работе сил трения

;      ,                              (3.4)

где   – длина дуги АВ

,                                        (3.5)

N – сила нормальной реакции

.                                            (3.6)

После подстановки формул (3.4) – (3.6) в выражение (3.3) и математических преобразований, получим для коэффициента трения

,                                      (3.7)

откуда

.                         (3.8)

Если подобрать амплитуду α так, чтобы выполнялось условие

,                                         (3.9)

то                                        .                                           (3.10)

Условие (3.9) выполняется в данной установке при  α ≈ 10-2 рад.

Формула (3.10) определяет потерю амплитуды α за время, равное половине периода, т.е. за половину колебания. Понятно, что за одно полное колебание потеря будет в два раза больше, а за n колебаний в 2 n раз больше, т.е.

,

откуда

.                                          (3.10)

3.1. Описание установки

На рисунке 3.2. представлен общий вид установки.

К основанию (2), оснащенному четырьмя ножками с регулируемой высотой, прикреплен миллисекундомер (1). В основании закреплена труба (3), на которой смонтирован корпус (4) с червячной передачей. Посредством оси червячная передача соединена с кронштейном (5), на котором прикреплена шкала (6) и шкала II (7). В кронштейне закреплена колонка (8), на которой подвешен на нити шар (9) с водилкой. В кронштейн (5) по направляющим вводятся образцы (9).

Для наклонного маятника используется вороток (11). К кронштейну (5) привинчен фотоэлектрический датчик (12), соединенный с миллисекундомером.

Рис. 3.2

 3.2. Требования по технике безопасности

1. Прежде чем приступить к работе, внимательно ознакомитесь с описанием установки и назначением отдельных ее частей (рис. 3.2).

2. Проверьте, подключен ли фотоэлектрический датчик к входному гнезду миллисекундомера.

3. Не оставляйте установку во включенном состоянии длительное время без присмотра.

4. Закончив измерения, отключите установку от сети, нажав переключатель «Сеть» и выдернув шнур из розетки сетевого напряжения.

3.3. Порядок выполнения работы

1. Включив шнур прибора в питающую сеть, нажмите переключатель «Сеть» и установите миллисекундомер в начальное состояние кнопкой «Сброс».

2. Установите наклонную плоскость под углом β = 30°. Отведите маятник на угол α0 = 8°, отпустите и, когда амплитуда колебаний уменьшится до αn = 6°, прекратите измерения кнопкой «Стоп».

Вычислите коэффициент трения качения по формуле (3.10)

,

где n – число полных колебаний, а углы α0 и αn взяты в радианах.

3. Повторите эксперимент два раза, взяв за α0 сначала 7°, затем 6° и для αn соответственно 5° и 4°.

4. Установите наклонную плоскость под углами 45° и 60° и повторите измерения (пункты 2, 3).

5. Результаты опытов занесите в таблицу.

6. Вычислите относительную и абсолютную погрешности измерения коэффициента трения качения.

7. Запишите результат измерения коэффициента трения качения в виде

.

Β, град.

α0, град.

αn, град.

Δα, рад.

n

μ

μср

30

8

7

6

6

5

4

45

8

7

6

6

5

4

60

8

7

6

6

5

4

 

4. Контрольные вопросы

1. Какой вид имеет уравнение движения шара, катящегося без проскальзывания по абсолютно твердой поверхности?

2. Как записывается полная механическая энергия катящегося шара?

3.Покажите, что при движении шара с проскальзыванием происходит диссипация полной механической энергии.

4. Какая физическая величина называется силой трения качения? Каким соотношением она определяется?

5. Каков физический смысл коэффициента трения качения?

6. Как зависит коэффициент трения качения от угла наклона плоскости к горизонту?

Список литературы

1. Сивухин Д.В. Общий курс физики. Т. 1. Механика. – М.: Наука, 1989.

2. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989.

9


С
 

m

О

О /

О

В

В /

Δα

α

А

А /

β

а)

Δh

β

А /

  Δl

В /   

б)


 

А также другие работы, которые могут Вас заинтересовать

21344. Преобразования структурных схем 749 KB
  Перенос точки ветвления через узел Перенос узла суммирования через звено по ходу сигнала Перенос узла суммирования через звено против хода сигнала Перенос точки ветвления через звено по ходу сигнала Перенос точки ветвления через звено против хода сигнала Последовательное соединение звеньев Последовательным соединением звеньев называется такое соединение при котором выходная величина предыдущего звена поступает на вход последующего. Следовательно при последовательном соединении звеньев их передаточные функции перемножаются Нули и...
21345. Устойчивость систем автоматического управления 1.15 MB
  Оценить устойчивость системы можно в результате исследования ее математической модели то есть решить соответствующую систему дифференциальных уравнений. Для разомкнутой системы математическая модель в операторной форме: или где оператор дифференцирования. Для замкнутой системы: или .
21346. Свойства систем автоматического управления 975.5 KB
  Системы характеризуются: запасом устойчивости областями устойчивости притяжения качеством регулирования и другими характеристиками. Структурная устойчивость неустойчивость Это такое свойство замкнутой системы при наличии которого она не может быть сделана устойчивой ни при каких изменениях параметров. Годограф Найквиста для данной системы изображен на Рис. Устойчивость этой системы определяется значениями параметров и .
21347. Теория автоматического управления 720 KB
  Постановка задачи автоматического управления. Типовые звенья систем автоматического управления все виды математических моделей построение частотных характеристик: Идеальное и реальное усилительные идеальное и реальное дифференцирующие идеальное формирующее идеальное интегрирующее звено второго порядка апериодическое колебательное консервативное минимально фазовые звенья. Устойчивость систем автоматического управления: Анализ устойчивости САУ по корням характеристического уравнения Алгебраический критерий устойчивости Гурвица.
21348. Минимально фазовые и неминимально фазовые звенья 1.64 MB
  Если в передаточной функции произвести замену то получаем называемое частотной характеристикой звена частотный коэффициент передачи звена. Общая фаза выходного сигнала звена будет складываться из частичных фаз определяемых каждым двучленом числителя и знаменателя. Если хотя бы один из корней звена расположен справа то такое звено не минимально фазовое звено.
21349. Порядок эксплуатации станции. Подготовка к работе 34.71 KB
  ; тумблер ПУ откл.; тумблер СОИ откл. Блок ВГ903: тумблер АВТАНОМ.; тумблер БЛ.
21350. Назначение, состав, основные технические характеристики, устройство АСП Р-934Б 34.13 KB
  Состав станции Станция размещается на гусеничном тягаче МТ ЛБУ. Время реакции станции с момента выхода в эфир подавляемого РЭС до момента создания ему дежурной помехи при работе по 20 предварительно заданным частотам в пределах одной литеры не более 20 мкс при работе по неизвестным частотам в пределах 20 МГц не более 800 мкс. Служебная связь в станции обеспечивается с помощью радиостанции Р173. Экипаж станции 3 человека.
21351. Автоматизированная станция помех Р-934УМ 73.5 KB
  1 предназначена для обнаружения анализа пеленгования источников радиоизлучений ИРИ и создания помех линиям УКВ радиосвязи системам сотовой и транковой связи а также системам телевидения.1 Станция помех Р934УМ может работать автономно в сопряженной паре однотипной АСП в качестве ведущей или ведомой а также под управлением пункта управления Р330КМА. В отличие от станции помех Р934У в АСП Р934УМ установлена более совершенная быстродействующая аппаратура управления и разведки позволяющая определять пеленги на источники...
21352. Назначение, состав, основные тактико-технические характеристики, общее устройство и принцип работы АПУ Р-330К 255.44 KB
  АПУ обеспечивает: сбор обработку хранение информации об обнаруженных ИРИ; автоматическое целераспределение целей с учётом системы приоритетов. У1М ПУ тактический – в этом режиме по каналам телекодовой связи ПУ осуществляет сбор информации от АСП об обнаруженных ИРИ ее обработку и передачу на вышестоящий ПУ а также приём результатов целераспределения от вышестоящего ПУ и её распределение на подчинённые АСП. ПУ У1М обеспечивает: Автоматизированный ввод в ЭВМ информации поступающей от У2М и станций помех частота вид передачи...