37947

Определение коэффициента Пуассона воздуха методом адиабати

Лабораторная работа

Физика

1 Определение коэффициента Пуассона воздуха методом адиабатического расширения: Методические указания к лабораторной работе № 16 по курсу общей физики Уфимск. В работе определяется коэффициент Пуассона воздуха методом адиабатического расширения основанным на измерении давления газа в сосуде после последовательно происходящих процессов его адиабатического расширения и изохорного нагревания.8] Список литературы ЛАБОРАТОРНАЯ РАБОТА № 16 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ВОЗДУХА МЕТОДОМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ 1. Цель работы Определение...

Русский

2013-09-25

445 KB

63 чел.

11

Составитель: В.С.Осипов

УДК 536.23 : 531.1

Определение коэффициента Пуассона воздуха методом адиабатического расширения: Методические указания к лабораторной работе № 16 по курсу общей физики / Уфимск. гос. авиац. техн. ун-т; Сост. В.С. Осипов. – Уфа, 2001. - 10с.

В работе определяется коэффициент Пуассона воздуха методом адиабатического расширения, основанным на измерении давления газа в сосуде после последовательно происходящих процессов его адиабатического расширения и изохорного нагревания.

Приведены краткая теория метода, принцип работы экспериментальной установки, указан порядок выполнения работы и форма представления результатов.

Предназначены для студентов, изучающих общий курс физики.

 Ил. 1, Табл. 1. Библиогр: 3 назв.

Рецензенты:  А.Р. Бигаева;

            Г.Г. Еникеев


СОДЕРЖАНИЕ

[0.0.0.1]             Г.Г. Еникеев

[0.0.1] 1. Цель работы

[0.0.2] 2. Теоретическая часть

[0.0.3] 3. Экспериментальная установка

[0.0.4] 4. Требования к технике безопасности

[0.0.5] 5. Порядок выполнения работы

[0.0.6] 6. Требования к отчету

[0.0.7] 7. Контрольные вопросы

[0.0.8] Список литературы


ЛАБОРАТОРНАЯ РАБОТА № 16

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ВОЗДУХА МЕТОДОМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ

1. Цель работы

Определение коэффициента Пуассона воздуха по данным измерения его давления после адиабатического расширения и последующего изохорного нагревания.

2. Теоретическая часть

2.1. Теплоемкость и коэффициент Пуассона

Теплоемкостью тела называют количество теплоты, необходимое для повышения температуры тела на 1 К. Следовательно, если телу сообщили количество теплоты d'Q и при этом его температура изменилась на dТ, то теплоемкость тела определяется отношением   

                   (2.1)

Для характеристики тепловых свойств веществ используют понятия удельной (с) и молярной (С) теплоемкости, определяемых как

  и ,            (2.2)

где m – масса тела; 

  – число молей вещества.

Согласно (2.2), удельная теплоемкость вещества равна количеству теплоты, необходимому для нагревания на 1 К единицы массы, а молярная – одного моля этого вещества.

Теплоемкости Сm, с и С зависят как от природы вещества, так и от условий, в которых происходит его нагревание. Это непосредственно следует из первого начала термодинамики

                                                            (2.3)

и связано с тем, что изменение внутренней энергии тела dU и совершаемая работа dA независимы и определяются характером происходящего с телом процесса. Поскольку

              ,                 (2.4)

где dV – изменение объема тела,

P  – давление,

то из (2.2) и (2.3) следует, что, например, молярная теплоемкость физически однородного вещества определяется соотношением

       

 .          (2.5)

Величина  характеризует изменение объема тела при изменении его температуры и в зависимости от характера происходящего с телом процесса может принимать любое значение. Поэтому молярная теплоемкость (как и удельная) в зависимости от вида процесса может иметь любое значение, причем как положительное, так и отрицательное. Однако в конкретном процессе молярная теплоемкость имеет строго определенное значение и является однозначной характеристикой тепловых свойств вещества. Важнейшими являются молярные теплоемкости при постоянном объеме и при постоянном давлении. Именно они приводятся в таблицах справочных данных. Для любых твердых и жидких веществ различие между этими теплоемкостями незначительно ввиду малого объемного расширения этих веществ при изменении их температуры, а для газов оно является существенным. Отношение

                            (2.6)

теплоемкостей газа при постоянном давлении и постоянном объеме называется коэффициентом Пуассона (иногда – показателем адиабаты) и является одним из основных параметров, характеризующих свойства газа.

Рассмотрим, чем определяется коэффициент Пуассона идеального газа. Внутренняя энергия идеального газа – это энергия теплового движения молекул и атомов в молекулах. Она складывается из кинетических энергий поступательного и вращательного движения молекул и энергии колебаний атомов в них. Согласно закону равнораспределения энергии по степеням свободы молекулы, на каждую поступательную и вращательную степень свободы приходится в среднем энергия, равная , где k – постоянная Больцмана, а на каждую колебательную степень свободы – энергия, равная kT. Таким образом, средняя энергия теплового движения молекулы идеального газа равна

      ,                (2.7)

где i – сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы.

Внутренняя энергия молей газа равна

             ,                  (2.8)

где R – универсальная газовая постоянная.

Согласно (2.8), внутренняя энергия данного количества идеального газа зависит только от его абсолютной температуры и не зависит от объема, что является естественным следствием модели идеального газа, в которой потенциальной енергией межмолекулярного взаимодействия пренебрегают. В соответствии с (2.5) и (2.8) молярная теплоемкость идеального газа при постоянном объеме равна  

           .                 (2.9)

Дифференцируя уравнение состояния идеального газа при постоянном давлении, имеем:

                                                          .                    (2.10)

Из (2.5), (2.9) и (2.10) следует, что молярная теплоемкость идеального газа при постоянном давлении равна

.             (2.11)

Следовательно, коэффициент Пуассона идеального газа определяется только числом степеней свободы его молекул:

          .                  (2.12)

2.2. Физическая основа метода

Рассмотрим воздух, содержащийся в каком-то сосуде, сообщающемся с атмосферой. Его давление равно атмосферному давлению Pа. Если перекрыть краном сообщение сосуда с атмосферой и с помощью насоса закачать в сосуд некоторое количество  атмосферного  воздуха,  то  давление  внутри   него   повысится. При относительно быстром нагнетании воздуха окончательное давление установится не сразу, потому что при таком нагнетании теплообмен между содержимым сосуда и его окружением произойти практически не успеет. Следовательно, сжатие воздуха будет происходить адиабатически и сопровождаться повышением температуры и, соответственно, давления. Окончательное давление установится по прошествии времени, необходимого для выравнивания температуры воздуха внутри сосуда с температурой окружающего воздуха благодаря теплопроводности стенок сосуда.

Полученное состояние некой массы m, заключенного в сосуде воздуха назовем первым состоянием. Оно характеризуется объемом, равным объему сосуда V1, температурой, равной температуре воздуха в помещении T1 и давлением

                           (2.13)

где P1 – приращение давления, происшедшее фактически за счет увеличения массы воздуха в сосуде по сравнению с массой в начальном состоянии.

При быстром открывании крана воздух из сосуда начнет выходить в атмосферу, т.е. расширяться до тех пор, пока давление в сосуде не сравняется с атмосферным. Это расширение происходит достаточно быстро и система не успевает обменяться теплом с окружающей средой. Следовательно, воздух расширяется адиабатически, в результате чего его температура понизится до некоторого значения Т2. Оставшаяся в сосуде масса m2 воздуха будет в состоянии, характеризуемом давлением Pa, температурой Т2 и объемом V1, которое назовем вторым.

Если после этого снова закрыть кран, то находящийся в сосуде воздух массой m2 при давлении Pа и температуре Т2 начнет изохорно нагреваться за счет теплообмена с окружающей сосуд атмосферой до тех пор, пока температура внутри и вне сосуда не станет одинаковой. При этом давление указанной массы воздуха увеличиться на некоторую величину P2 и станет равным

                        (2.14)

В итоге мы имеем третье состояние воздуха с параметрами m2, P2, V1 и T1.

Адиабатический переход воздуха из первого состояния во второе описывается законом Пуассона:

               (2.15)

а изохорный переход из второго состояния в третье – законом Гей-Люссака:

                                  (2.16)

Принимая во внимание (2.13) и (2.14), из (2.15) и (2.16) получаем:

              (2.17)

В случае относительно малых изменений давления Р1 и Р2 по сравнению с атмосферным Ра, обе части уравнения (2.17) можно разложить по биному Ньютона и ограничиться членами первого порядка малости:

                 (2.18)

откуда

                         (2.19)

Таким образом, при относительно небольших изменениях давления Р1 и Р2 их измерение дает возможность определить значение .

3. Экспериментальная установка

Установка, схема которой приведена на рисунке, состоит из герметического баллона с подсоединенными к нему насосом и водяным манометром со шкалой для измерения перепада давления воздуха в баллоне по сравнению с атмосферным (рис. 3.1). Баллон снабжен краном, с помощью которого можно перекрыть сообщение баллона с атмосферой. Одно из колен манометра сообщается с атмосферой. Поэтому изменение давления Р, заключенного в баллоне воздуха по сравнению с атмосферным давлением Ра определяется разностью высот уровней воды в коленах манометра:


                                (3.1)

где h – указанная разность высот уровней;

– плотность воды;

g – ускорение свободного падения.

                    

Рис 3.1

С учетом (2.20) измерение Р1 и Р2 сводится к измерению соответствующих разностей h1 и h2 высот уровней воды в коленах манометра, а формула (2.19) для расчета – к формуле

                                (3.2)

4. Требования к технике безопасности

4.1. Электронасос должен быть обязательно заземлен.

5. Порядок выполнения работы

5.1. При закрытом кране баллона включите насос для нагнетания в баллон воздуха. Когда разность высот уровней воды в манометре достигнет 15-20 см, насос выключить повторным нажатием сетевой кнопки. Выждите 2 - 3 минуты, пока температура внутри баллона не станет равной температуре окружающего воздуха, измерьте установившуюся разность высот h1 уровней воды в коленах манометра.

5.2. Поворотом рукоятки крана соедините воздух баллона с атмосферой и в момент, когда уровни воды в коленах манометра сравняются, быстро закройте кран. Выждите опять 2-3 минуты, пока охлажденный при адиабатическом расширении воздух нагреется до прежней (комнатной) температуры, и измерьте установившуюся разность уровней h2.

5.3. Поворотом крана в обратную сторону откройте сообщение баллона с атмосферой.

5.4. Повторите опыт 5 - 6 раз.

5.5. По формуле (3.2) вычислите значение , а также абсолютную и относительную ошибки каждого отдельного измерения.

5.6. Рассчитайте среднее значение и абсолютную и относительную погрешности его определения.

6. Требования к отчету

Отчет по работе должен содержать:

1) номер, название и цель работы;

2) основные положения теории метода определения ;

3) схему экспериментальной установки;

4) результаты измерений и расчетов, представленных в форме таблицы, и формулы вычисления погрешностей, приведенных под таблицей;

5) вывод.

 Номер

 опыта

 h1, мм

 h2, мм

   

  

 , %

     1

     2

3

4

5

Среднее значение

7. Контрольные вопросы

1. Получите взаимосвязь между удельной и молярной теплоемкостями идеального газа, пользуясь первым началом термодинамики.

2. Что такое коэффициент Пуассона? Как Вы объясняете то, что его значение для любого газа больше единицы?

3. Какие процессы происходят с воздухом в настоящей работе? Каким законам они подчиняются?

4. Какой процесс называется адиабатическим? Получите уравнение этого процесса для идеального газа, пользуясь первым законом термодинамики и уравнением состояния.

5. Что утверждает закон равнораспределения энергии по степеням свободы молекул? Каковы границы его применимости?

6. К чему приведет замена в данной работе водяного манометра на ртутный?

Список литературы

1. Савельев И.В. Курс общей физики. T.I. – M.: Наука, 1989. – С.222-226, 234-241, 245.

2. Орир Дш. Физика. T.I. - М.: Мир, 1981. – С, 196, 203-208.

3. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высш. шк., 1989. – С.100-104. 121-124.


 

А также другие работы, которые могут Вас заинтересовать

31211. История формирования принципов телеметрии 36 KB
  Сначала появились первые телеметрические сейсморегистрирующие системы ТСС разработчики которых вообще отказались от кабельной системы передачи сейсмической информации от места ее регистрации от сейсмоприемников к месту ее окончательной записи в сейсморазведочную станцию. Телеметрические сейсморегистрирующие системы представляют собой сложно организованные и многофункциональные устройства основными элементами которых является полевой модуль сбора информации ПМ и центральная регистрирующая станция ЦРС По принципу передачи информации...
31212. Элементы методики ВСП 39 KB
  Гальперина метод ВСП начинает интенсивно развиваться и применяться при разведке на нефть и газ во всем мире. В настоящее время трудно себе представить сейсморазведочные работы без использования в том или ином объеме ВСП. ВСП метод скважинных около скважинных и межскважинных сейсмических исследований предназначенный для решения геологических методических и технологических задач на различных этапах геологоразведочного процесса с целью повышения геологоэкономической эффективности разведки месторождений различных полезных ископаемых...
31213. Телеметрические сейсморегистрирующие системы 39.5 KB
  Включает в себя следующие элементы: консоль оператора Opertor Console ModuleOSM на базе IBM486 блок управления системой System Control ModuleSCM с подблоком памяти SIM; линейный интерфейсный модуль Line Interfce ModuleLIM магнитофон Таре Trnsport ModuleTTM корреляторсумматор Correltor Stcker ModuleCSM. Оно включает в себя: полевые регистрирующие модули RSC MRX RSX; коммутационный модуль LT или АLТ Периферийное оборудование станции содержит: устройство управления источником взрыва...
31214. Телеметрические сейсморегистрирующие системы фирмы „SERCEL” 37.5 KB
  Сейсмическая станция SN368 включает в себя две подсистемы аппаратуры: центральную контролирующую электронику Centrl Control UnitCCU; полевое оборудование. Центральная контролирующая электроника CCU включает в себя б блоков: основной контрольный блок {Mster Control Unit MCU дисплей {Disply UnitDU; линейный расширитель Line Extension UnitLXV; ленточный регистратор {Tpe TrnsportsTT; устройство для подключения дополнительной периферии: принтера плоттера коррелятора сумматора дополнительного магнитофона; блок...
31215. Атрибуты систем наблюдения и их анализ 44.5 KB
  Если перекрытие по линиям приема происходит наполовину то количество отрабатываемых полос по всей площади съемки можно рассчитать следующим образом: NS=LY 0. Количество отрабатываемых шаблонов групп сейсмоприемников по полосе рассчитывается по формуле: NT=LX SLI1. В рассматриваемом примере для отработки всей площади участка потребуется отработать количество полос NS number swtch равное 15.6 км 1 = 8 а количество отрабатываемых в полосе шаблонов 16.
31216. Вспомогательные технические средства 37.5 KB
  Технологическая связь между отдельными подразделениями сейсморазведочной партии сейсморазведочная станция СВП СМ буровые установки и т. Для производства топогеодезических работ в сейсморазведочной партии создается один или несколько топогеодезический отряд возглавляемый старшим техником или инженеромтопографом. В задачи отряда входит рекогносцировка местности и определение наиболее удобных путей подъезда к площади работ вынесение на местность и подготовка профилей для работы на них сейсморазведочного отряда привязка отработанных...
31217. Группирование сейсмоприемников и источников 43 KB
  При кажущейся скорости поверхностной волны Vпов разность времен прихода этой волны на кый элемент группы по сравнению с первым элементом будет составлять к1 x Vпов. Для этих волн временной сдвиг между кым и первым элементом группы будет равен к1x Vотр. Учитывая то что элементы интерференционной группы одинаковы и выбирая начало отсчета в центре базы группы амплитудночастотную характеристику группы можно записать в виде: . Для изучения свойств амплитудночастотной характеристики линейной группы строится и анализируется график...
31218. Источники упругих волн 30 KB
  Все источники упругих волн применяемые в сейсморазведке подразделяются на два вида: взрывные и невзрывные. Невзрывные источники колебаний в свою очередь делятся на импульсные и вибрационные. Импульсные невзрывные источники могут быть построены на различных физических принципах. При работе на суше используются преимущественно источники либо механического принципа работы удар по грунту падающего груза либо газодинамического типа.
31219. Классификация методов сейсморазведки 30 KB
  Классификация методов сейсморазведки. Внутри нее сформировалось много различных направлений и модификаций которые в силу сложившейся в геофизической литературе терминологической практики получили название методов. Общее число методов сейсморазведки весьма велико. Однако на производстве фактически широко используется лишь ограниченное число методов.