37958

Определение моментов инерции твердых тел методом трифилярного подвеса

Лабораторная работа

Физика

Момент инерции.1] Список литературы Лабораторная работа № 1 Определение моментов инерции твердых тел методом трифилярного подвеса 1. Экспериментальное определение моментов инерции твердых тел. Момент инерции.

Русский

2013-09-25

318.5 KB

20 чел.

Содержание

[1] 1. Цель работы

[2] 2. Теоретическая часть

[2.1] 2.1. Момент инерции. Теорема Штейнера

[2.2] 2.2. Метод трифилярного подвеса

[3] 3. Приборы и принадлежности

[4] 4. Требования по технике безопасности

[5] 5. Порядок выполнения работы

[6] 6. Требования к отчету

[7] 7. Контрольные вопросы

[7.1] Список литературы


Лабораторная работа № 1

Определение моментов инерции твердых тел

методом трифилярного подвеса

1. Цель работы

1.1. Экспериментальное определение моментов инерции твердых тел.

1.2. Проверка теоремы Штейнера.

2. Теоретическая часть

2.1. Момент инерции. Теорема Штейнера

Моментом инерции материальной точки относительно оси называют произведение массы этой точки mi на квадрат ее расстояния до оси

.

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит это тело

. (2.1)

Представляя тело состоящим из сколько угодно малых частей объемом dV и массы dm, его момент инерции можно рассчитать интегрированием

, (2.2)

где r – расстояние от элемента тела объемом dV до оси, относительно

которой рассчитывается момент инерции.

Так как dm =  dV, где – плотность тела в данной области dV, то .

Если тело однородно, то для всех областей ρ одинаково и

. (2.3)

Наиболее просто определяются моменты инерции тел правильной геометрической формы с равномерным распределением массы по объему.

Рассчитаем момент инерции сплошного однородного диска массы m и радиуса R относительно оси симметрии (рис. 2.1). Разобьем диск на кольцевые слои толщиной  и радиуса . Объем такого слоя равен , где  – толщина диска.

С учетом (2.3) момент инерции диска

.

Вынесем за знак интеграла постоянный множитель

.

Введя массу диска , как произведение плотности  на объем диска , получим

. (2.4)

Из (2.4) следует, что момент инерции сплошного однородного диска зависит только от его массы и радиуса и не зависит от толщины диска. Поэтому формула (2.4) применима для расчета момента инерции сплошного однородного цилиндра относительно оси симметрии.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции тела относительно любой параллельной оси можно определить, воспользовавшись теоремой Штейнера. Согласно теореме Штейнера, момент инерции J тела относительно произвольной оси равен сумме момента инерции тела  относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния а между осями

. (2.5)

Момент инерции тела относительно оси является мерой инертности тела при вращательном движении (мерой инертности тела при поступательном движении является его масса) и зависит не только от массы тела, но и от ее распределения в пространстве относительно оси. Тело обладает определенным моментом инерции относительно любой оси независимо от того, вращается оно или находится в покое.

2.2. Метод трифилярного подвеса

В настоящей работе моменты инерции твердых тел определяются с помощью трифилярного подвеса, представляющего собой диск радиуса R, подвешенный горизонтально на трех нитях длиной L к неподвижному диску меньшего радиуса r (рис. 2.2).

Рис. 2.2

Центры дисков расположены на одной вертикальной оси OO, вокруг которой нижний диск может совершать крутильные колебания. При колебаниях центр масс С диска радиуса R перемещается вдоль оси OO. При повороте нижнего диска на угол вокруг оси OO его перемещение равно h (рис. 2.3), а приращение потенциальной энергии

Eпm g h,

где m – масса нижнего диска.

Колеблющийся диск совершает вращательное движение, поэтому его кинетическая энергия равна

,

где J  момент инерции диска относительно оси OO,   угловая скорость диска.

При небольших смещениях диска по вертикали по сравнению с длиной нитей, т.е. при малых углах поворота, пренебрегая вязкостью воздуха, можно показать, что диск совершает гармонические колебания и угол его поворота изменяется со временем по закону

,

где   амплитуда углового смещения,  период колебаний,

а изменение потенциальной энергии диска при максимальном угле поворота  равно максимальной кинетической энергии вращательного движения, которой он обладает в момент прохождения положения равновесия

,

где  – угловая скорость диска в момент прохождения положения равновесия.

Отсюда момент инерции диска

. (2.6)

Угловая скорость диска меняется по гармоническому закону

.

Следовательно, максимальная угловая скорость  равна

. (2.7)

Высоту h, на которую поднимается диск, определим из геометрических соображений (рис. 2.3)

. (2.8)

Но

(2.9)

С учетом уравнений (2.9) уравнение (2.8) запишем в виде

.

При малых углах   , а  .

Таким образом

. (2.10)

Подставляя (2.7) и (2.10) в (2.6) получим

. (2.11)

Уравнение (2.11) можно применять не только для расчета момента инерции диска () относительно оси OO, но и для расчета момента инерции диска с грузами (J). Момент инерции груза () можно найти

. (2.12)

3. Приборы и принадлежности

Приборы и принадлежности:

- трифилярный подвес;

- набор тел (2 сплошных цилиндра, параллелепипед);

- электросекундомер;

- линейка.

4. Требования по технике безопасности

1. Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и лабораторной установкой.

2. По окончании работы приведите в порядок свое рабочее место. Обесточьте электросекундомер.

5. Порядок выполнения работы

В работе определяются моменты инерции:

- ненагруженного диска;

- диска с грузами;

- грузов.

Задание 5.4 выполняется по указанию преподавателя.

5.1. Определение момента инерции ненагруженного диска

1. Измерить радиус R нижнего диска, радиус r верхнего диска и длину L нитей. Масса диска = (0,8885±0,0001) кг.

2. Повернуть диск на угол 5-6 градусов вокруг оси OO и измерить электросекундомером время 20 полных колебаний.

3. Повторить измерения еще 2 раза и результаты записать в табл. 5.1.

4. Определить среднее время 20 колебаний и рассчитать средний период колебаний  

,

где n – число колебаний.

5. По формуле (2.11) вычислить момент инерции ненагруженного диска.

6. Рассчитать относительную и абсолютную погрешности измерения момента инерции диска .

Таблица 5.1

, кг

R, м

r, м

l, м

, с

,cp, с

, с

,

кгм2

,

кгм2

ε, %

1

2

3

5.2. Определение момента инерции сплошного цилиндра относительно оси, проходящей через центр масс тела

1. Расположить исследуемое тело на диске так, чтобы его ось симметрии совпала с осью OO (рис. 2.3).

2. Повернув диск на 5-6 градусов вокруг оси OO, 3 раза измерить время 20 полных колебаний.

3. Рассчитать среднее время и определить период колебаний Т нагруженного диска

. (5.1)

4. По формуле 2.11 вычислить момент инерции Jc1 системы, принимая массу m равной сумме масс исследуемого тела и диска.

5. По формуле 2.12 определить момент инерции J1 цилиндра.

6. Рассчитать погрешности измерения момента инерции цилиндра.

7. Рассчитать момент инерции сплошного цилиндра относительно оси вращения, проходящей через его центр инерции, по формуле

теорцил,

где mцил  масса цилиндра, r  радиус цилиндра.

8. Сравнить значения момента инерции сплошного цилиндра, полученные экспериментально и теоретически.

9. Внести результаты измерений и расчетов в табл. 5.2.

Таблица 5.2

m, кг

mцил, кг

t, с

tcp, с

T, с

,

кгм2

,

кгм2

,

кгм2

ε, %

J1теор,

кгм2

1

2

3

5.3. Проверка теоремы Штейнера

1. Расположить строго симметрично на диске два цилиндра.

2. Повернув диск с цилиндрами на 5-6 градусов вокруг оси OO, 3 раза измерить время 20 полных колебаний. По среднему времени по формуле (5.1) вычислить период колебаний нагруженного диска.

3. По формуле (2.11) рассчитать момент инерции  системы, принимая массу m, равной массе диска и двух цилиндров (цил).

4. Определить момент инерции J2 одного цилиндра по формуле

.

5. Рассчитать погрешности измерения.

6. Теоретическое значение момента инерции цилиндра, расположенного на расстоянии d от оси вращения, определить по формуле

теорцилцил,

где r  радиус цилиндра, mцил  масса цилиндра, d  расстояние от оси вращения до центра тяжести цилиндра.

7. Результаты измерений внести в табл. 5.3.

8. Сравнить экспериментальное значение момента инерции сплошного цилиндра, расположенного на расстоянии d от оси вращения, с теоретически рассчитанным значением.

Таблица 5.3

m, кг

t, с

tср, с 

T, с 

,

кгм2

,

кгм2

,

кгм2

ε, %

теор,

кгм2

1

2

3

5.4. Проверка зависимости момента инерции от распределения массы тела относительно оси

1. Расположить параллелепипед основанием на диске так, чтобы ось симметрии проходила через ось OO.

2. Три раза определить время t 20 полных колебаний и по среднему времени по формуле (5.1) вычислить период колебаний.

3. По формуле (2.10) вычислить момент инерции  нагруженного диска, принимая массу m, равной массе диска и параллелепипеда (= m+ mпар).

4. Рассчитать момент инерции параллелепипеда по формуле

Jпар =  ,

5. Расположить параллелепипед боковой гранью на диске так, чтобы параллелепипед был расположен симметрично относительно диаметра диска, а ось вращения проходила бы через его центр тяжести.

6. Три раза определить время t, за которое происходит 20 полных колебаний и по среднему времени по формуле (5.1) вычислить период колебаний Т.

7. По формуле (2.11) вычислить момент инерции  нагруженного диска, используя значение периода Т.

8. Рассчитать момент инерции параллелепипеда по формуле

Jпар =   ,

9. Результаты измерений и вычислений внести в табл. 5.4.

10. Сравнить значения Jпар и Jпар.

Таблица 5.4

m, кг

t, с

tcp, с

T, с

t, c

tcp, c

,

кгм2

Jпар,

кгм2

,

 кгм2

Jпар,

кгм2

1

2

3

6. Требования к отчету

Отчет по лабораторной работе должен содержать:

а) номер и название лабораторной работы;

б) основные формулы для выполнения расчетов;

в) таблицы с результатами измерений и вычислений;

г) формулы для расчета погрешностей измерений;

д) выводы.

7. Контрольные вопросы

1. Что называется моментом инерции материальной точки относительно оси? Что называется моментом инерции тела относительно оси?

2. В чем суть теоремы Штейнера?

3. Как теорема Штейнера проверяется экспериментально?

4. В какие моменты времени абсолютное значение угловой скорости диска будет максимальным?

5. Какой закон сохранения применяется при выводе формулы для определения момента инерции экспериментальным путем? Сформулируйте его.

6. Выведите формулу для расчета момента инерции сплошного цилиндра относительно оси симметрии.

Список литературы

1. Савельев И.В. Курс общей физики. Кн. 1. - М.: Наука, 1998.

2. Детлаф А.Н., Яворский Б.М. Курс физики. - М.: Высшая школа, 2002.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 2004.

PAGE  13


r

r

Рис. 2.1

φ

 dr

h

В1

O

O

В

A1

А

R

l

l1

L

r

О

h

O

Рис. 2.3

С

LL

R


 

А также другие работы, которые могут Вас заинтересовать

23723. Метод проб и ошибок 69.5 KB
  Основная цель: 1 Тренировать способность к использованию метода проб и ошибок для решения уравнений. – Какие уравнения мы учились решать на прошлом уроке Уравнения вида x x а = b – Что мы использовали при решении уравнений Метод проб и ошибок. – Сегодня мы на уроке проанализируем на сколько хорошо вы усвоили метод проб и ошибок.
23724. Перевод условия задачи на математический язык 55 KB
  Обозначим за x – площадь третьей комнаты. Вторая на 3 м2 больше третьей значит её площадь равна x 3 м2. Первая комната в 2 раза меньше второй чтобы найти её площадь надо площадь второй комнаты разделить на 2 т. Общая площадь трёх комнат 42 м2.
23725. Перевод условия задачи на математический язык 53 KB
  Длина в м Ширина в м Площадь в м2 В классе даются разные ответы возможно кто – то из учащихся совсем не сможет выполнить задание. – Почему в классе разные результаты – Что общего и чем отличается данная задача от тех которые мы решали на прошлом уроке Общее то что в этой задаче неизвестна ни длина ни ширина прямоугольника а только известно что длина на 3 м больше ширины а отличаются эти задачи схемой для данной задачи схемой будет таблица. Возможны варианты: Длина в м Ширина в м Площадь в м2 x 3 x xx 3 или 70...
23726. Перевод условия задачи на математический язык 58.5 KB
  Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы Маленькие автобусы 3. – Какую формулу нужно использовать для выполнения задания Чтобы найти сколько всего человек поехало на экскурсию надо количество людей в одном автобусе умножить на количество автобусов т. Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы x 6 y 1 x 6y 1 или 252 Маленькие автобусы x y xy или 252 Работу можно организовать в группах или используя подводящий диалог. –...
23727. Перевод условия задачи на математический язык 46.5 KB
  – Какими математическими выражениями может быть их перевод Числовое или буквенное выражение уравнение вида ax x = b уравнение вида xx a = b двумя уравнениями с двумя переменными xy = c x ay b = с – В каком ещё виде может быть перевод условия задачи на математический язык Возможны разные ответы в том числе и ответ: одно уравнение с двумя неизвестными. – Уменьшите число 640 на 76. Запишите на математическом языке сколько всего единиц содержит трехзначное число...
23728. Признаки делимости на 10, на 5, на 2 43.5 KB
  – Известно что t – нечетное число. – Какое число может быть лишним Например 14 – у него сумма цифр нечетное число а у остальных – четное; 28 – кратно 4 а остальные – нет; 42 – его сумма цифр кратна 3 а у остальных чисел – нет и т. – Назовите четырехзначное число кратное 2. – Сформулируйте гипотезу о том по какому признаку можно определить – является данное число четным или нет.
23729. Признаки делимости на 10, на 5, на 2 44.5 KB
  – Что общего в числах полученного ряда Все числа кратны 5. Эти числа оканчиваются на 0. – Приведите пример четного числа удовлетворяющего неравенству x 80. – Какие остатки могут получаться при делении числа на 100.
23730. Свойства и признаки делимости 71.5 KB
  2 а x не делится на 10 т. 2 а x делится на 3; число оканчивается любой цифрой кроме 0; б x делится на 7; б x не делится на 5; в x не делится на 2 т. любое нечётное число; в x делится на 3; г x делится на 9. г x не делится на 9.
23731. Признаки и свойства делимости 59.5 KB
  – С какой целью мы их изучали Чтобы быстрее определять делится ли число сумма произведение на заданное число. а Найдите числа 365 Чтобы найти часть от числа надо число разделить на знаменатель и умножить на числитель получится 292; б Найдите число если его равны 146. Чтобы найти результат надо число разделить на числитель и умножить на знаменатель получится 219 2. а любое число не делящееся на 10; Что бы сумма делилась на число надо чтобы каждое слагаемое делилось на число: 140 делится на 10 значит x должен делиться на...