37962

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Лабораторная работа

Физика

Момент инерции.11 ЛАБОРАТОРНАЯ РАБОТА № 4 ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ 1. Цель работы Исследование крутильных колебаний и измерение момента инерции тела сложной формы. Момент инерции.

Русский

2013-09-25

493.5 KB

79 чел.

Содержание

  1.  Цель работы……………………………………………………………4
  2.  Теоретическая часть…………………………………………………..4

2.1. Момент инерции. Теорема Штейнера……………………………...4

2.2. Метод крутильных колебаний……………………………………...6

  1.  Приборы и принадлежности………………………………………….8
  2.  Требования по технике безопасности………………………………..8
  3.  Порядок выполнения работы…………………………………………8
  4.  Требования к отчету…………………………………………………10
  5.  Контрольные вопросы……………………………………………….10

Список литературы……………………………………………………..11

ЛАБОРАТОРНАЯ РАБОТА № 4

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ

МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

1. Цель работы

Исследование крутильных колебаний и измерение момента инерции тела сложной формы.

2. Теоретическая часть

2.1. Момент инерции. Теорема Штейнера

Моментом инерции материальной точки относительно оси называют величину

,

где mi – масса материальной точки, ri – расстояние от материальной точки до оси.

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, составляющих его

.

Представляя тело состоящим из малых частей объемом dV и массы dm, его момент инерции можно рассчитать интегрированием

                                            ,                          (2.1)

где ρплотность.

Рассчитаем, например, момент инерции тонкого однородного стержня массы m и длины l относительно оси перпендикулярной стержню и проходящей через его середину (рис. 2.1).

 

                    

равен                                .                           (2.2)

Из (2.1) следует, что момент инерции однородного стержня не зависит от его ширины, поэтому формула (2.2) применима для расчета момента инерции тонкой однородной пластины прямоугольной формы.

Если известен момент инерции тела относительно оси, проходящей через центр масс, то момент инерции тела относительно любой параллельной оси можно определить, воспользовавшись теоремой Штейнера, согласно которой момент инерции J тела относительно произвольной оси равен сумме момента инерции Jс тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями

                                                .                                     (2.3)

Используя уравнение (2.2), теорему Штейнера и уравнение (2.1) рассчитаем момент инерции параллелепипеда относительно оси симметрии.

                           Рис. 2.2

.

Момент инерции параллелепипеда относительно оси 0Z

              ,                 (2.4)

где а и b – длины сторон параллелепипеда, расположенные в горизонтальной плоскости, m – масса параллелепипеда.

Момента инерции тела относительно оси является мерой инертности тела при вращательном движении и зависит не только от массы тела, но и от распределения ее в пространстве относительно оси. Тело обладает определенным моментом инерции относительно любой оси независимо от того вращается оно или покоится.

2.2 Метод крутильных колебаний

В настоящей работе моменты инерции твердых тел определяется с помощью крутильных колебаний на установке, представленной на рис. 2.3.

Рис. 2.3

Рамка 1 закреплена на натянутой стальной проволоке, проходящей по ее геометрической оси. Если рамку повернуть на некоторый угол φ, то происходит закручивание проволоки. Тогда силы упругости стремятся вернуть рамку в исходное положение. Момент М возвращающей силы при относительно малом угле поворота φ связан с ним соотношением

                                                    ,                                         (2.5)

где D – коэффициент, называемый модулем кручения проволоки.

Величина D зависит от длины проволоки, ее диаметра и модуля сдвига, характеризующего упругие свойства материала проволоки.

Согласно основного закона динамики вращательного движения, момент силы М, угловое ускорение ε и момент инерции J тела связаны соотношением

                                                   .                                            (2.6)

Из (2.5) и (2.6) получаем дифференциальное уравнение, описывающее движение рамки

или

                                             ,                                        (2.7)

где .

Решением уравнения (2.7) является гармоническое колебание

с периодом

                                               .                                           (2.8)

Момент инерции J можно найти на основе соотношения (2.8), если узнать величину D. В данной работе определение модуля кручения D не требуется. Измеряется период колебания Т пустой рамки с моментом инерции J, Затем определяется период Т1 колебаний системы, состоящий из рамки с установленными на нее грузами 2 с известным моментом инерции J0. Тогда, согласно формуле (2.8), имеем

                                           .                                     (2.9)

Исключая из (2.8) и (2.9) величину D, получаем формулу для расчета момента инерции J исследуемого тела

                                         .                                     (2.10)

3. Приборы и принадлежности

экспериментальная установка;

набор тел (два сплошных цилиндра, параллелепипед, куб).

4. Требования по технике безопасности

4.1. Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и лабораторной установкой.

4.2. По окончании работы приведите в порядок свое рабочее место. Обесточьте прибор.

5. Порядок выполнения работы

1. Установить рамку так, чтобы в положении равновесия флажок рамки находился между окнами фотодатчика 3 рис. 2.2. Установить электромагнит в положение, чтобы угловая амплитуда колебаний рамки составляла 5–10 градусов. Включить электропитание нажатием кнопки «СЕТЬ». Затем повернуть рамку так, чтобы она удерживалась в исходном положении электромагнитом.

2. Измерить длительность времени t для числа полных колебаний рамки N=20. Для этого нажать кнопку «ПУСК». Кнопку «СТОП» нажать, когда число полных колебаний будет равно N – 1.

3. Повторить опыт еще два раза. Рассчитать среднее время tср и определить средний период колебаний Т рамки

                                                 .                                              (5.1)

4. Установить два груза (цилиндра) на планку. Три раза определить время t1 20 полных колебаний рамки. По среднему времени определить период колебаний Т1 рамки с грузами.

5. Определить момент инерции рамки Jр по формуле (2.10), где J0 = 2 m (), (m – масса груза; r=0,015 м – радиус груза;     l=0,052 м – расстояние от оси вращения рамки до оси грузов).

Результаты измерений занести в таблицу 1.

6. Снять грузы, установить исследуемый образец 4 (по указанию преподавателя) в рамке и закрепить специальными винтами так, чтобы острия винтов входили в углубления на образце вдоль       какой – либо из осей ОХ, Оy, ОZ,  АС /, ЕК, LM  рис. 5.1.

7. Повторив п.2 и п.3 определить время t2 20 колебаний рамки с образцом и по среднему времени рассчитать период Т2.

8. Определить  момент  инерции исследуемого образца по формуле

                                .                                        (5.2)

9. Выполнить п. 6 – 8 для всех указанных осей. Результаты занести в таблицу 2.

10. Сравнить  результаты  определения  моментов  инерции образца относительно различных осей.

11. Рассчитать относительную и абсолютную погрешности измерения момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя).

12. Рассчитать теоретическое значение момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя) по формуле (2.4)

13. Сравнить результаты экспериментального определения момента инерции образца с теоретически рассчитанным.

Таблица 1

№ опыта

t, с

tср

T, с

t1, с

t1 ср, с

T1, с

Jр, кг·м2

1

2

3

Таблица 2

№ опыта

t2, с

t2 ср

T2, с

J, кг·м2

ΔJ, кг·м2

ε, %

1

2

3

  1.  Требования к отчету

Отчет по лабораторной работе должен содержать:

а) номер и название лабораторной работы;

б) основные формулы для выполнения расчетов;

в) результаты измерений и вычислений;

г) формулы для расчета погрешностей;

д) выводы.

7. Контрольные вопросы

  1.  Что называется моментом  инерции  материальной  точки  относительно оси? Что называется моментом  инерции  тела относительно оси?
  2.  Каков физический смысл момента инерции?

3.  В чем суть теоремы Штейнера?

4. Запишите основной закон динамики вращательного движения и раскройте физический смысл величин, входящих в него.

5. Покажите, что система совершает гармонические колебания, запишите дифференциальное уравнение колебаний и его решение.

6. Выведите формулу для расчета момента инерции однородного параллелепипеда относительно оси симметрии.

Список литературы

  1.  Савельев И.В. Курс общей физики. Кн. 1. – М.: Наука, 1998.– 336 с.

2. Детлаф А.Н., Яворский Б.М.  Курс физики. – М.: Высшая школа, 2000. – 718 с.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 1994.– 542 с.

PAGE  10


 

А также другие работы, которые могут Вас заинтересовать

25556. Аристотель о душе и ее способностях 30.5 KB
  Форма – придает материи качественную определенность составляет сущность вещей. Материя не может быть бесформенной форма не может не иметь материальной основы. Душа – форма живой материи. Душа и тело связаны как материя и форма т.
25557. Неоплатонизм и томизм в философии и психологии Средневекового периода 30.5 KB
  Развитие мира – постоянное восхождение или нисхождение божественного Ступени: Божественное первоначало Божественный ум Божественная душа Природа По мере нисхождения верховного начала оно передается во множество умов и душ. Первично божественное материя – последняя стадия дробления первоначала Душа человека происходит из мировой души она нематериальна непространственна едина. Уровни или части души: Умопостигаемая душа Чувственная душа Тело Деятельность души функции Обращение к мировому разуму Обращение к чувственному миру и...
25558. Развитие средневековой психологии на востоке. Авиценна, Альгазен, Аверроэс 26.5 KB
  Авиценн согласен с Аристотелем в том что душа это форма тела и о трех способностях души растительной рост животной ощущения аффекты движения и разумной воображение память разум. Авиценн выделил чистые разумные акты независимые от тела. Причины выделения индивидуального разума – 1. чувства и разум разобщены самостоятельны по отношению друг к другу независимы.
25559. Психология в эпоху Возрождения: основные тенденции в развитии философо-психологических взглядов 27.5 KB
  Поскольку человек есть часть природы то и душа его есть лишь проявление природы. Стремления и удовольствия – требования природы человек должен их удовлетворять. Помпонацци 1462–1524 О бессмертии души Бог в делах природы участия не принимает. Человек есть результат развития природы причем у него как и у всего живого появляется психическое душевное названное термином дух захваченное из окружающей среды наиболее совершенное материальное вещество.
25560. Общие черты в развитии психологии Нового времени 26 KB
  : Рост производства Переход к капитализму Мануфактуры Тенденции характерные для философов: Отделение науки от религии: отказ от веры светский характер науки для того чтобы ускорить прогресс Источник познания: Сенсуализм родоначальник – Ф.Бэкон Источник познания – чувственный опыт. Источник познания – мышление разум. Способы научного познания: Индуктивный: от частногоопыта к общему правилу Дедуктивный: от общего теории к частному частным ситуациям Что первично: психика или телесный мир Сенсуализм: сначала...
25561. Ф. Бэкон и оформление эмпирического принципа в философии и психологии 41.5 KB
  Бэкон и оформление эмпирического принципа в философии и психологии Ф. Бэкон 1561 1626 английский философ историк политический деятель основоположник эмпиризма. Бэкон – родоначальник английского материализма и эмпирического направления в философии и психологии. Человек: Чувственная часть души проявляется в теле – занимается наука Разум божественный – занимается теология Суть основной философской идеи Френсиса Бэкона – эмпиризма – в том что в основе познания лежит исключительно опыт.
25562. Р. Декарт о «страстях души» 34 KB
  Декарт о страстях души Рене Декарт 15961650 лат. В трактате Страсти души 1649 представлена вся система философскопсихологических взглядов Декарта Картезианский дуализм: существует 2 субстанции: Протяженная телесная физика – материализм в учении Мыслящая духовная – метафизика – светский идеализм в учении осн. Страсти – тип или уровень деятельности который является продуктом взаимодействия тела и души. Состояния души кот.
25563. Детерминистическое учение Б. Спинозы о психике 31.5 KB
  Учение о единой субстанции ее атрибутах и модусах Стремился объяснить природу из самой себя. Ее сущность раскрывается в атрибутах Атрибуты – такие существенные и всеобщие аспекты субстанции которые ей не тождественны и по отношению к которой они вторичные и производные. конкретные фундаментальные свойства субстанции Человеку доступны только 2 атрибута: мышления и протяжения Кстати Декарт Модусы – частные состояния и видоизменения субстанции все многообразие мира различные явления и события По отношению к атрибуту протяжения каждый...
25564. Г. Лейбниц и его монадология 29 KB
  Монады – истинные атомы природы душеподобные единицы. Они просты неделимы вечны автономны не влияют друг на друга Свойства монад: Активность стремление Изначально заданное содержание врожденные представления Жизнь монады – стремление и переход от смутных представлений Перцепций к более ясным представлениям апперцепции Иерархия монад: Земные: Чистые монады есть активность нет представлений – неживая вечно движущаяся материя Монадыдуши смутные представления низкая степень стремления к ясности – растения животные...