37978

Определение моментов инерции тел произвольной формы

Лабораторная работа

Физика

11 Лабораторная работа № 5 Определение моментов инерции тел произвольной формы 1. Цель работы Определение момента инерции математического и физического маятника а также изучение зависимости момента инерции физического маятника от распределения массы. Соотношение 1 аналогично 2 – му закону Ньютона в динамике поступательного движения и в таком виде записывается в тех случаях когда момент инерции тела при вращении не изменяется. Моментом инерции материальной точки относительно некоторой оси называется величина равная произведению...

Русский

2013-09-25

180 KB

3 чел.

Содержание

1. Цель работы……………………………………………………………4

2. Теоретическая часть………………………………………………..….4

3. Экспериментальная часть……………………………………………..7

3.1. Описание установки…………………………………………………7

3.2. Порядок выполнения работы……………………………………….8

4. Контрольные вопросы……………………………………………….11

Список литературы………………………………………………….11


Лабораторная работа № 5

Определение моментов инерции тел произвольной формы

1. Цель работы

Определение момента инерции математического и физического маятника, а также изучение зависимости момента инерции физического маятника от распределения массы.

2. Теоретическая часть

Основное уравнение динамики вращательного движения тела вокруг неподвижной оси имеет вид:

,                                                   (1)

где  – векторная сумма моментов всех сил относительно оси вращения,  – угловое ускорение тела, т.е. вторая производная по времени от угла поворота φ тела. Соотношение (1) аналогично       2 – му закону Ньютона в динамике поступательного движения и в таком виде записывается в тех случаях, когда момент инерции тела при вращении не изменяется.

Моментом инерции материальной точки относительно некоторой оси называется величина, равная произведению массы точки на квадрат ее расстояния от оси вращения

.                                                        (2)

Для протяженных тел момент инерции определяется как сумма моментов инерции элементарных масс  (материальных точек), на которые можно разбить тело:

.                                                (3)

Имеются различные методы экспериментального определения моментов инерции. В настоящей работе определение моментов инерции тел произвольной формы производится методом колебаний. Для этих целей измеряется период колебаний Т математического и физического маятников.

Математическим маятником называется материальная точка массой m0, подвешенная на невесомой, нерастяжимой нити и совершающая колебания под действием силы тяжести.

Момент инерции  математического маятника

,                                                  (4)

где l – длина маятника.

Период колебаний математического маятника определяется по формуле

.                                               (5)

Физическим маятником называется твердое тело, совершающее колебания вокруг неподвижной горизонтальной оси, не совпадающей с его центром инерции, под действием силы тяжести.

Если отклонить маятник от положения равновесия на угол φ (рис. 1), то момент силы, стремящийся вернуть маятник в положение равновесия равен

.                                         (6)

В (6) l – расстояние между точкой подвеса и центром инерции маятника С, m – масса маятника,  – плечо силы тяжести. Основное уравнение динамики вращательного движения (1) с учетом (6) можно записать в виде

.

При малых углах отклонения ~ φ, тогда

.                                            (7)

Уравнение (7) можно переписать в виде

                                          (8)

или

.                                             (9)

Решение этого уравнения имеет вид

,                                        (10)

где а и α – произвольные постоянные. Через ω02 обозначена величина

ω02.                                                (11)

Из уравнений (9) и (10) следует, что при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота которых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния между осью вращения и центром инерции маятника. Зная ω0, можно рассчитать период колебания Т физического маятника:

ω0,           .                             (12)

Из сопоставления формул (5) и (12) следует, что математический маятник длиной

                                                 (13)

будет иметь такой же период колебаний, что и данный физический маятник. Величину  называют приведенной длиной физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения О, называется центром качания физического маятника О /.

По теореме Штейнера момент инерции тела относительно любой оси

,                                             (14)

где – момент инерции тела относительно оси, проходящей через центр тяжести, l – расстояние между осями.

Подставим в уравнение (13)  момент инерции, определяемый выражением (14):

.                                  (15)

Из уравнения (15) видно, что приведенная длина всегда больше l, так что точка подвеса О и центр качания О / лежат по разные стороны от центра инерции С. Зная период колебания Т, массу маятника m и приведенную длину, можно рассчитать момент инерции J физического маятника:

          или            .                (16)

3. Экспериментальная часть

3.1. Описание установки

Комплексная установка для определения моментов инерции математического и физического маятников (рис. 3.1) состоит из вертикальной стойки 5, основания 6 и элементов подвеса физического и математического маятников. На конце приспособления 4 закреплен зажим 7 для подвеса и изменения длины математического маятника во время его колебаний.

Математический маятник представляет собой стальной шарик 2, подвешенный на нити 3. Длина нити математического маятника может меняться.

Физический маятник сделан из стали в виде длинного стержня 1, на котором в разных местах может закрепляться груз  8. Для подвеса физического маятника в верхней части стойки горизонтально закреплена стальная каленая призма 4. Положение центра инерции физического маятника определяют с помощью специально предназначенной призмы 9. Для измерения времени колебаний используют секундомер 10.

Рис. 3.1

3.2. Порядок выполнения работы

3.2.1. Определение моментов инерции математического и физического маятников

1. Подвешивают физический маятник на призму, закрепив груз 8 в нижнем положении. Отклоняют маятник от вертикали на малый угол (5 – 7°) и отпускают. Измеряют время t 30–ти полных колебаний и определяют период колебаний Т =  (n – число колебаний). Измерения производят не менее трех раз.

2. Подбирают длину математического маятника так, чтобы значения его периода колебаний совпали с периодом колебаний физического маятника: ТМ = ТФ. В этом случае длина математического маятника равна приведенной длине физического маятника lпр.

3. Рассчитывают момент инерции математического маятника по формуле

,

где m0 – масса математического маятника, указанная на установке,      l – длина нити, измеряемая линейкой.

4. Определяют ускорение силы тяжести по формуле

.

5. Результаты измерений для математического маятника вносят в таблицу 3.1.

6. Зная массу физического маятника mФ, а также расстояние l (от точки подвеса до центра инерции), рассчитывают момент инерции маятника по формуле (16).

7. Все результаты заносят в таблицу 3.2.

8. Рассчитывают абсолютные и относительные погрешности определения момента инерции JФ.

9. Истинное значение записывают в виде

 кг·м2.

Таблица 3.1

m0

(кг)

l

(м)

n

t

(с)

ТМ

(с)

g

(м/с2)

JМ

(кг·м2)

1

2

3

Таблица 3.2

mФ

(кг)

n

t

(с)

ТФ

(с)

l

(м)

JФ

(кг·м2)

1

2

3

3.2.2. Определение момента инерции физического маятника в зависимости от распределения массы

1. Подвешивают физический маятник на призму 4. Укрепляют груз 8 в крайнее нижнее положение. Определяют не менее 3-х раз период колебания Т, измеряя время t 30–ти полных колебаний:

.

2. Перемещают груз во 2-е положение, а затем в 3-е, 4-е и, наконец, в самое крайнее верхнее положение и определяют период колебаний Т2, Т3, Т4 и Т5.

3. Измеряют каждый раз расстояние l от точки подвеса до центра инерции с помощью призмы 9 (рис. 3.1).

4. Рассчитывают момент инерции физического маятника

,

а также , , , .

Считают, что

,

где  – масса маятника без груза,  – масса прикрепляемого груза.

5. Значение ускорения силы тяжести берут из измерений с математическим маятником.

6. Результаты опыта заносят в таблицу 3.3.

7. Рассчитывают абсолютные и относительные погрешности .

8. Строят график зависимости момента инерции  от расстояния l от точки подвеса до центра инерции.

9. Истинное значение момента инерции физического маятника записывают в виде

 кг·м2.

10. Делают вывод о зависимости момента инерции физического маятника от распределения массы в нем.

Таблица 3.3

Положение

груза

n

t

(с)

Т

(с)

l

(м)

JФ

(кг·м2)

1-е

2-е

3-е

4-е

5-е

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4. Контрольные вопросы

1. Что называется математическим маятником?

2. Что такое физический маятник?

3. Какая длина называется приведенной длиной физического маятника?

4. Что называется моментом инерции тела?

5. Как рассчитываются моменты инерции математического и физического маятников?

6. Как устроена установка для определения моментов инерции маятников?

7. Зависит ли момент инерции от распределения массы относительно оси вращения?

Список литературы

1. Савельев И.В. Курс общей физики. Т. 2. – М.: Наука, 1998.

2. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1999.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 2000.

10


 
О

     С  ●

О /  ●

l

φ

Рис.2.1


 

А также другие работы, которые могут Вас заинтересовать

71464. Создание цифрового ортофототрансформированного снимка 99.5 KB
  Принципиальная схема цифрового ортофототрансформированния снимков представлена на рис.8 Исходными материалами при цифровом ортофототрансформировании снимков служат: цифровое изображение исходного фотоснимка; цифровая модель рельефа в большинстве случаев используется...
71465. Внутреннее ориентирование снимка в системе координат цифрового изображения 113.5 KB
  Для определения параметров внутреннего ориентирования снимка измеряют координаты изображений координатных меток снимка в системе координат цифрового изображения oC xC yC. Если в результате фотограмметрической калибровки съемочной камеры были определены координаты координатных меток...
71466. Наблюдение и измерение цифровых изображений 3.72 MB
  Координаты центров пикселов в левой прямоугольной системе координат цифрового изображения оC xC уC .1 началом которой является левый верхний угол цифрового изображения определяются в так называемых пиксельных координатах единицей измерения в этом случае является пиксел.
71467. Назначение и области применения цифрового трансформирования снимков 27.5 KB
  В частном случае если при трансформировании снимков не учитывается влияние кривизны Земли и проекции карты на положение контуров трансформированное изображение представляет собой ортогональную проекцию местности на горизонтальную плоскость.
71470. ОПРЕДЕЛЕНИЕ КООРДИНАТ ТОЧЕК ОБЪЕКТА ПО РАДИОЛОКАЦИОННЫМ ИЗОБРАЖЕНИЯМ 46.5 KB
  Ее положение в системе координат объекта OXYZ определяет вектор RM. Вектор D определяет положение той же точки относительно начала системы координат радиолокационной системы Sxyz. Вектор RS задает начало системы координат радиолокационной системы Sxyz в системе координат объекта.