37978

Определение моментов инерции тел произвольной формы

Лабораторная работа

Физика

11 Лабораторная работа № 5 Определение моментов инерции тел произвольной формы 1. Цель работы Определение момента инерции математического и физического маятника а также изучение зависимости момента инерции физического маятника от распределения массы. Соотношение 1 аналогично 2 му закону Ньютона в динамике поступательного движения и в таком виде записывается в тех случаях когда момент инерции тела при вращении не изменяется. Моментом инерции материальной точки относительно некоторой оси называется величина равная произведению...

Русский

2013-09-25

180 KB

5 чел.

Содержание

1. Цель работы……………………………………………………………4

2. Теоретическая часть………………………………………………..….4

3. Экспериментальная часть……………………………………………..7

3.1. Описание установки…………………………………………………7

3.2. Порядок выполнения работы……………………………………….8

4. Контрольные вопросы……………………………………………….11

Список литературы………………………………………………….11


Лабораторная работа № 5

Определение моментов инерции тел произвольной формы

1. Цель работы

Определение момента инерции математического и физического маятника, а также изучение зависимости момента инерции физического маятника от распределения массы.

2. Теоретическая часть

Основное уравнение динамики вращательного движения тела вокруг неподвижной оси имеет вид:

,                                                   (1)

где  – векторная сумма моментов всех сил относительно оси вращения,  – угловое ускорение тела, т.е. вторая производная по времени от угла поворота φ тела. Соотношение (1) аналогично       2 – му закону Ньютона в динамике поступательного движения и в таком виде записывается в тех случаях, когда момент инерции тела при вращении не изменяется.

Моментом инерции материальной точки относительно некоторой оси называется величина, равная произведению массы точки на квадрат ее расстояния от оси вращения

.                                                        (2)

Для протяженных тел момент инерции определяется как сумма моментов инерции элементарных масс  (материальных точек), на которые можно разбить тело:

.                                                (3)

Имеются различные методы экспериментального определения моментов инерции. В настоящей работе определение моментов инерции тел произвольной формы производится методом колебаний. Для этих целей измеряется период колебаний Т математического и физического маятников.

Математическим маятником называется материальная точка массой m0, подвешенная на невесомой, нерастяжимой нити и совершающая колебания под действием силы тяжести.

Момент инерции  математического маятника

,                                                  (4)

где l – длина маятника.

Период колебаний математического маятника определяется по формуле

.                                               (5)

Физическим маятником называется твердое тело, совершающее колебания вокруг неподвижной горизонтальной оси, не совпадающей с его центром инерции, под действием силы тяжести.

Если отклонить маятник от положения равновесия на угол φ (рис. 1), то момент силы, стремящийся вернуть маятник в положение равновесия равен

.                                         (6)

В (6) l – расстояние между точкой подвеса и центром инерции маятника С, m – масса маятника,  – плечо силы тяжести. Основное уравнение динамики вращательного движения (1) с учетом (6) можно записать в виде

.

При малых углах отклонения ~ φ, тогда

.                                            (7)

Уравнение (7) можно переписать в виде

                                          (8)

или

.                                             (9)

Решение этого уравнения имеет вид

,                                        (10)

где а и α – произвольные постоянные. Через ω02 обозначена величина

ω02.                                                (11)

Из уравнений (9) и (10) следует, что при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота которых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния между осью вращения и центром инерции маятника. Зная ω0, можно рассчитать период колебания Т физического маятника:

ω0,           .                             (12)

Из сопоставления формул (5) и (12) следует, что математический маятник длиной

                                                 (13)

будет иметь такой же период колебаний, что и данный физический маятник. Величину  называют приведенной длиной физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения О, называется центром качания физического маятника О /.

По теореме Штейнера момент инерции тела относительно любой оси

,                                             (14)

где – момент инерции тела относительно оси, проходящей через центр тяжести, l – расстояние между осями.

Подставим в уравнение (13)  момент инерции, определяемый выражением (14):

.                                  (15)

Из уравнения (15) видно, что приведенная длина всегда больше l, так что точка подвеса О и центр качания О / лежат по разные стороны от центра инерции С. Зная период колебания Т, массу маятника m и приведенную длину, можно рассчитать момент инерции J физического маятника:

          или            .                (16)

3. Экспериментальная часть

3.1. Описание установки

Комплексная установка для определения моментов инерции математического и физического маятников (рис. 3.1) состоит из вертикальной стойки 5, основания 6 и элементов подвеса физического и математического маятников. На конце приспособления 4 закреплен зажим 7 для подвеса и изменения длины математического маятника во время его колебаний.

Математический маятник представляет собой стальной шарик 2, подвешенный на нити 3. Длина нити математического маятника может меняться.

Физический маятник сделан из стали в виде длинного стержня 1, на котором в разных местах может закрепляться груз  8. Для подвеса физического маятника в верхней части стойки горизонтально закреплена стальная каленая призма 4. Положение центра инерции физического маятника определяют с помощью специально предназначенной призмы 9. Для измерения времени колебаний используют секундомер 10.

Рис. 3.1

3.2. Порядок выполнения работы

3.2.1. Определение моментов инерции математического и физического маятников

1. Подвешивают физический маятник на призму, закрепив груз 8 в нижнем положении. Отклоняют маятник от вертикали на малый угол (5 – 7°) и отпускают. Измеряют время t 30–ти полных колебаний и определяют период колебаний Т =  (n – число колебаний). Измерения производят не менее трех раз.

2. Подбирают длину математического маятника так, чтобы значения его периода колебаний совпали с периодом колебаний физического маятника: ТМ = ТФ. В этом случае длина математического маятника равна приведенной длине физического маятника lпр.

3. Рассчитывают момент инерции математического маятника по формуле

,

где m0 – масса математического маятника, указанная на установке,      l – длина нити, измеряемая линейкой.

4. Определяют ускорение силы тяжести по формуле

.

5. Результаты измерений для математического маятника вносят в таблицу 3.1.

6. Зная массу физического маятника mФ, а также расстояние l (от точки подвеса до центра инерции), рассчитывают момент инерции маятника по формуле (16).

7. Все результаты заносят в таблицу 3.2.

8. Рассчитывают абсолютные и относительные погрешности определения момента инерции JФ.

9. Истинное значение записывают в виде

 кг·м2.

Таблица 3.1

m0

(кг)

l

(м)

n

t

(с)

ТМ

(с)

g

(м/с2)

JМ

(кг·м2)

1

2

3

Таблица 3.2

mФ

(кг)

n

t

(с)

ТФ

(с)

l

(м)

JФ

(кг·м2)

1

2

3

3.2.2. Определение момента инерции физического маятника в зависимости от распределения массы

1. Подвешивают физический маятник на призму 4. Укрепляют груз 8 в крайнее нижнее положение. Определяют не менее 3-х раз период колебания Т, измеряя время t 30–ти полных колебаний:

.

2. Перемещают груз во 2-е положение, а затем в 3-е, 4-е и, наконец, в самое крайнее верхнее положение и определяют период колебаний Т2, Т3, Т4 и Т5.

3. Измеряют каждый раз расстояние l от точки подвеса до центра инерции с помощью призмы 9 (рис. 3.1).

4. Рассчитывают момент инерции физического маятника

,

а также , , , .

Считают, что

,

где  – масса маятника без груза,  – масса прикрепляемого груза.

5. Значение ускорения силы тяжести берут из измерений с математическим маятником.

6. Результаты опыта заносят в таблицу 3.3.

7. Рассчитывают абсолютные и относительные погрешности .

8. Строят график зависимости момента инерции  от расстояния l от точки подвеса до центра инерции.

9. Истинное значение момента инерции физического маятника записывают в виде

 кг·м2.

10. Делают вывод о зависимости момента инерции физического маятника от распределения массы в нем.

Таблица 3.3

Положение

груза

n

t

(с)

Т

(с)

l

(м)

JФ

(кг·м2)

1-е

2-е

3-е

4-е

5-е

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4. Контрольные вопросы

1. Что называется математическим маятником?

2. Что такое физический маятник?

3. Какая длина называется приведенной длиной физического маятника?

4. Что называется моментом инерции тела?

5. Как рассчитываются моменты инерции математического и физического маятников?

6. Как устроена установка для определения моментов инерции маятников?

7. Зависит ли момент инерции от распределения массы относительно оси вращения?

Список литературы

1. Савельев И.В. Курс общей физики. Т. 2. – М.: Наука, 1998.

2. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1999.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 2000.

10


 
О

     С  ●

О /  ●

l

φ

Рис.2.1


 

А также другие работы, которые могут Вас заинтересовать

8572. Проблема происхождения философии 40.5 KB
  Проблема происхождения философии. Мировоззрение - совокупность наиболее общих взглядов и представлений о сущности окружающего мира. Духовное освоение мироздания с определенной точки зрения. В мировоззрении в обобщенном виде представлены: познав...
8573. Специфика философского знания. Основной вопрос философии 31.5 KB
  Специфика философского знания. Основной вопрос философии. Специфика философского знания. Основная специфика философского знания заключается в его двойственности, так как оно: имеет очень много общего с научным знанием - предмет, мет...
8574. Предмет, структура и функции философии 36 KB
  Предмет, структура и функции философии. Предмет философии. Предметом называется круг вопросов, которые изучает философия. Общую структуру предмета философии, философского знания составляют четыре основных раздела: Онтология - учение о мир...
8575. Постановка и решение проблемы первоосновы мира в натурфилософии античности 30 KB
  Постановка и решение проблемы первоосновы мира в натурфилософии античности. Греческие натурфилософы пытались найти первоначало, первоматерию, то есть вещество, из которого произошел мир. Они полагали, что первоначало (др.-греч. архэ) является перв...
8576. Философия элейской школы 30.5 KB
  Философия элейской школы. Элейская школа (6-сер.5 века до н.э.) Наиболее важными ее представителями были Ксенофан, Парменид и Зенон. Основателем элейской школы считают Парменида и Ксенофана. К заметным представителям данной школы принадлежал т...
8577. Философия софистов и Сократа 30 KB
  Философия софистов и Сократа. Философия софистов. Софистика как философское учение (вт.пол.5 в. до н.э.) Софисты (любящие мудрость) не считали себя философами, они были платными учителями мыслить, говорить, делать. Считали, что нужно анализировать...
8578. Объективный идеализм Платона и его связь с пифагорейской традицией 32.5 KB
  Объективный идеализм Платона и его связь с пифагорейской традицией. Объективный идеализм Платона. Платон (428/427 - 347 гг. до н.э.) - ученик Сократа, которого считают основателем объективного идеализма. Самыми важными проблемами в философии Платона...
8579. Философская система Аристотеля 30.5 KB
  Философская система Аристотеля. Самостоятельная философская позиция Аристотеля началась с критики идеализма Платона. Почему же Аристотель критикует платоновское учение об идеях. Аристотель критикует это учение по нескольким направлениям. Прежде всег...
8580. Научная революция XVII века и особенности философии Нового времени 29 KB
  Научная революция XVII века и особенности философии Нового времени. Научная революция XVII века. Символами общественного прогресса в XVII веке становятся первые буржуазные резолюции в Нидерландах (конец XVI - начало XVII вв.) и Англии (середина...