38001

ИЗУЧЕНИЕ ОСНОВНЫХ ЗАКОНОВ ФОТОЭФФЕКТА И ИЗМЕРЕНИЕ ПОСТОЯННОЙ ПЛАНКА

Лабораторная работа

Физика

Введение Постоянная Планка h играет в квантовой физике такую же роль как скорость света с в релятивистской физике. В начале XX века была создана так называемая старая квантовая теория в основе которой лежат гипотеза Планка о дискретном характере испускания и поглощения света осциллятором введенное Эйнштейном представление о квантах света фотонах и его уравнение фотоэффекта построенная Бором теория простейших атомов. Внешний фотоэффект Фотоэффектом называется освобождение полное или частичное электрона от связей с атомами и...

Русский

2013-09-25

68.4 KB

10 чел.

Лабораторная работа № 3.23

ИЗУЧЕНИЕ ОСНОВНЫХ ЗАКОНОВ ФОТОЭФФЕКТА И ИЗМЕРЕНИЕ ПОСТОЯННОЙ ПЛАНКА2

М.А. Иванов

Цель работы:

  1.  Изучить основные законы фотоэффекта.
  2.  Измерить постоянную Планка.
  3.  Оценить работу выхода материала фотокатода.
  4.  Введение

Постоянная Планка h играет в квантовой физике такую же роль, как скорость света с в релятивистской физике. Эти фундаментальные мировые константы определяют границы применимости классического описания.

В масштабах макромира числовое значение постоянной Планка чрезвычайно мало. Этим объясняется широкая применимость классической физики с лежащей в ее основе концепцией непрерывности к описанию макроскопических явлений. Решение проблемы теплового излучения исторически было первым шагом на пути к разгадке «тайны потерянной константы». Впоследствии ограниченность представлений классической физики обнаружила себя при исследовании фотоэффекта  и при попытках объяснения устойчивости атомов и закономерностей в спектрах из излучения. В начале XX века была создана так называемая «старая квантовая теория», в основе которой лежат гипотеза Планка о дискретном характере испускания и поглощения света осциллятором, введенное Эйнштейном представление о квантах света (фотонах) и его уравнение фотоэффекта, построенная Бором теория простейших атомов. Но старая квантовая теория не представляла собой стройной, логически замкнутой модели. Удачно описав некоторые экспериментальные факты, она не могла дать правильного объяснения и количественного описания всего многообразия явлений микромира. С наступлением второй четверти двадцатого столетия начинается период создания современной квантовой теории с ее надежными логически непротиворечивыми основными положениями и адекватным математическим аппаратом.

Фундаментальная константа h — постоянная Планка, играющая выдающуюся роль в современной физике, — может быть определена экспериментально как с помощью законов излучения черного тела, так и другими, более прямыми и точными методами. Измерение постоянной Планка можно осуществить на основе свойств разных физических явлений: тепловое излучение, фотоэффект, коротковолновая граница сплошного рентгеновского спектра, эффект Джозефсона в сверхпроводниках и др. Полученные в результате опытов значения постоянной h хорошо согласуются друг с другом.

Учитывая изложенное, приобретение студентами ВУЗов практических навыков измерения постоянной Планка лабораторными методами является важным аспектом изучения квантовой физики.

В данной лабораторной работе измерение постоянной Планка производится на основе внешнего фотоэффекта. Отличие от традиционной схемы, в которой используют чувствительный гальванометр для измерения малого фототока, состоит в использовании менее дорогостоящего милливольтметра для измерения суммы фото-ЭДС и напряжения источника.

  1.  Внешний фотоэффект

Фотоэффектом называется освобождение (полное или частичное) электрона от связей с атомами и молекулами вещества под воздействием света (видимого, инфракрасного, ультрафиолетового). Если электроны выходят за пределы твердого или жидкого освещаемого вещества (полное освобождение), то фотоэффект называется внешним. Внешний фотоэффект изучался в 1887 году Г. Герцем и подробно исследован в 1888 - 1890 годах А.Г. Столетовым.

Ниже приведена традиционная схема, с помощью которой можно наблюдать внешний фотоэффект. G – гальванометр, позволяющий измерять значения малых токов (цена деления обычно 50 нА).

Независимо от интенсивности света, фотоэффект начинается только при определенной (минимальной для данного вещества) частоте света , называемой «красной границей» фотоэффекта. Этой минимальной частоте соответствует максимальная длина волны , которая также называется красной границей фотоэффекта (с – скорость света).

Рис. 1. Традиционная схема для наблюдения внешнего фотоэффекта.

Энергия фотона h, поглощенная электроном, частично расходуется на совершение электроном работы выхода А из вещества. Оставшаяся часть энергии представляет собой кинетическую энергию фотоэлектрона , где m - масса электрона,  – его начальная скорость. Уравнение Эйнштейна для фотоэффекта:

,     (1)

где  – максимальная кинетическая энергия фотоэлектрона. Согласно уравнению (1), с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается, т. к. величина А постоянна для данного вещества. При некоторой частоте  = кинетическая энергия фотоэлектрона станет равной нулю, и фотоэффект прекратится. Это будет иметь место при h= А, т.е. в случае, когда вся энергия фотона расходуется на совершение работы выхода. Тогда

.     (2)

Если подать на катод (+), а на анод (–), то между катодом и анодом создается тормозящее электроны электрическое поле. При прохождении электроном расстояния между катодом и анодом силы поля совершают работу, равную eU (e – заряд электрона, U – разность потенциалов между катодом и анодом), которая идет на торможение электрона. В том случае, когда эта работа больше максимальной начальной кинетической энергии электрона, т.е.

,     (3)

все электроны полностью тормозятся прежде, чем достигнут анода, после чего возвращаются обратно на катод. Значение «запирающего» напряжения  определяется из равенства:

    (4)

  1.  Измерение постоянной Планка

Соотношение (4) дает возможность использовать явление фотоэффекта для измерения постоянной Планка.

Если мы будем облучать фотокатод сначала светом одной частоты , а затем другой  и определим соответствующие значения напряжения  и , то получим следующие равенства (сделав замену: , где  - длина волны света):

    (5)

Решая их совместно, получим:

    (6)

Для удобства вычислений в дальнейшем будем находить произведение hc, (его табличное значение: hc=1,254 эВ·мкм, где h – постоянная Планка, , с – скорость света, .

  1.  Описание лабораторной установки

Вместо гальванометра в данной установке использован милливольтметр, который позволяет определять малые значения напряжения. С помощью милливольтметра измеряется напряжение , где  - фото-ЭДС, генерируемая за счёт попадания света. Если бы мы измеряли в этой схеме фототок  с помощью гальванометра, то фототок  обратился бы в ноль при условии . Следовательно, находя точку, где , и измеряя соответствующее напряжение U, мы измеряем то самое напряжение, при котором фототок  обращается в ноль.

Вместо фотоэлемента в установке использован фотоэлектронный умножитель ФЭУ-13. Благодаря большой площади фотокатода, ФЭУ-13 при дневном освещении создаёт напряжение между фотокатодом и фотоанодом до 500 mV при U = 0.

Схема установки для измерения постоянной Планка с лампами накаливания в качестве источников света показана ниже. Между лампами и фотокатодом установлены синий и желтый светофильтры для выделения узких полос излучения из широкого спектра света ламп.

Интенсивность света меняется при помощи диода, включенного последовательно с лампой накаливания. При включении диода в цепь мощность лампочек P уменьшается в 4 раза.

Рис. 2. Схема лабораторной установки с лампами накаливания. Здесь Б – батарейка на 9 В, R – потенциометр, V – вольтметр для измерения U, Ф – фотоумножитель ФЭУ–13, mV – милливольтметр для измерения , включенный последовательно.

При сопротивлении милливольтметра 1 МОм изменение его показания на 1 мВ соответствует изменению фототока на 1 нА ( ≈ 1нА), т.е. чувствительность примерно в 50 раз выше, чем при использовании схемы Рис. 1.

В другом варианте установки для измерения постоянной Планка вместо ламп накаливания в качестве источников света использованы светодиоды. Между светодиодами и фотокатодом также установлены синий и желтый светофильтры. Интенсивность света меняется путем изменения величины балластного сопротивления, включенного последовательно со светодиодом и ограничивающего ток через него. При меньшем значении  балластного сопротивления ток через светодиод равен , а при большем    Величина балластного сопротивления меняется с помощью переключателя “/”. Для этого варианта установки 𝝀ж = 0,597 мкм, 𝝀с=0,550 мкм.

  1.  Порядок выполнения работы

1. Проверить, что показание милливольтметра при закрытом от света ФЭУ-13 равно нулю. Включить лампочку №1 (светофильтр ЖС-19, 𝝀ж = 0,580 мкм) и подать на ФЭУ-13 задерживающее напряжение. Увеличивая задерживающее напряжение, добиться ослабления фототока до нуля и измерить значение задерживающего напряжения Uз1 с точностью до милливольта.

2. Аналогичные измерения провести со вторым светофильтром (синий, 𝝀с=0,510 мкм), определить Uз2. (При работе на установке со светодиодами принять: 𝝀ж = 0,597 мкм, 𝝀с=0,550 мкм.)

3. Измерения повторить 3 раза для каждого светофильтра. Полученные данные занести в таблицу 1.

4. Усредненные значения задерживающих напряжений подставить в формулу (6) и вычислить произведение hc.

5. Сравнить полученное значение hс с табличным и вычислить относительную погрешность.

6. Из любого уравнения системы (5) найти работу выхода материала фотокатода А. По формуле (2) найти 𝝀max.

7. Снять вольтамперные характеристики  для каждого из светофильтров для двух интенсивностей света. Построить 4 графика . Снимать данные от -Uз до нуля с шагом 100 мВ, сменить полярность напряжения U, используя тумблер «смена полярности», и снимать данные от 0 В до +2 В с шагом 200 мВ, а от +2 В до +9 В с шагом 1 В. Данные занести в таблицу 2.

8. После выполнения работы отключить от сети макет и измерительные приборы.

Таблица 1. Результаты измерений.

1

2

3

, мВ

, мВ

Таблица 2. Результаты измерений.

Синий фильтр

Жёлтый фильтр

Мощность лампочки

Мощность лампочки

P/4

P

P/4

P

U, мВ

Uф, мВ

U, мВ

Uф, мВ

U, мВ

Uф, мВ

U, мВ

Uф, мВ

  1.  Контрольные вопросы

  1.  Что называется фотоэффектом?
  2.  Как устроен ФЭУ?
  3.  Что называется вольтамперной характеристикой фотоэлемента?
  4.  Что называется красной границей фотоэффекта?
  5.  От чего зависит сила фототока?
  6.  Написать и объяснить уравнение Эйнштейна.
  7.  Объясните физический смысл задерживающего потенциала.

  1.  Литература

1. И. В. Савельев. Курс общей физики. Том 3. - М.: Наука, 1987.

2. Е. И.  Бутиков. Оптика: Учеб. пособие для вузов/Под ред. Н. И, Калитеевского. — М.: Высш. шк., 1986.

3. О.С. Айданова, С.А. Сверчинская. Изучение основных законов фотоэффекта и определение постоянной Планка: Методические рекомендации. Иркутский государственный университет, 1999.

Краткая инструкция по выполнению

лабораторной работы № 3.23

Рис. 1. Схема установки с лампами накаливания, где Б – батарейка на 9 В, R – потенциометр, V – вольтметр для измерения U, Ф – фотоумножитель ФЭУ–13, mV – милливольтметр для измерения Uф.

Порядок выполнения работы

1. Проверить, что показание милливольтметра при закрытом от света ФЭУ-13 равно нулю. Включить лампочку №1 (светофильтр ЖС-19, 𝝀ж = 0,580 мкм) и подать на ФЭУ-13 задерживающее напряжение. Увеличивая задерживающее напряжение, добиться ослабления фототока до нуля и измерить значение задерживающего напряжения Uз1 с точностью до милливольта.

2. Аналогичные измерения провести со вторым светофильтром (синий, 𝝀с=0,510 мкм), определить Uз2. (При работе на установке со светодиодами принять: 𝝀ж = 0,597 мкм, 𝝀с=0,550 мкм.)

3. Измерения повторить 3 раза для каждого светофильтра. Полученные данные занести в таблицу 1.

4. Усредненные значения задерживающих напряжений подставить в формулу (6) и вычислить произведение hc.

5. Сравнить полученное значение hс с табличным и вычислить относительную погрешность.

6. Из любого уравнения системы (5) найти работу выхода материала фотокатода А. По формуле (2) найти 𝝀max.

7. Снять вольтамперные характеристики  для каждого из светофильтров для двух интенсивностей света. Построить 4 графика . Снимать данные от -Uз до нуля с шагом 100 мВ, сменить полярность напряжения U, используя тумблер «смена полярности», и снимать данные от 0 В до +2 В с шагом 200 мВ, а от +2 В до +9 В с шагом 1 В. Данные занести в таблицу 2.

8. После выполнения работы отключить от сети макет и измерительные приборы.

2 Макет лабораторной установки был изготовлен в 2010 г. студентами гр. 963001 2-го курса факультета телекоммуникаций БГУИР Поповым Е.В., Осиповым А.Г. и Гроцким Д.Л. под руководством доцента Иванова М.А. Ими же составлено описание лабораторной работы.


 

А также другие работы, которые могут Вас заинтересовать

22822. Качество товара, определения. Требования к качеству товара. Классификация свойств и показателей качества. Потребительская ценность продукции: базовая и дополнительная и их влияние на 16.84 KB
  Качество — одна из основополагающих характеристик товара, которая оказывает решающее влияние на создание потребительских предпочтений и формирование конкурентоспособности.
22823. Органічна хімія, конспект лекцій 887 KB
  Значення органічної хімії. Вивчення основних теоретичних положень органічної хімії сприяє формуванню, розширенню і поглибленню фундаментальних, загальнопрофесійних, спеціальних знань, а також активному формуванню предметних і професійних компетенцій, спрямованих на виконання виробничих функцій.
22824. Обязательная сертификация в законе «О техническом регулировании». Ее сущность, объекты, участники. Организация обязательной сертификации 19.03 KB
  Порядок передачи сведений о выданных сертификатах соответствия в единый реестр выданных сертификатов устанавливается федеральным органом исполнительной власти по техническому регулированию...
22825. Государственный контроль и надзор за соблюдением обязательных требований технических регламентов 16.81 KB
  Государственный контроль (надзор) за соблюдением требований технических регламентов осуществляется федеральными органами исполнительной власти, органами исполнительной власти субъектов Российской Федерации
22826. Релаксаційні коливання у схемі з неоновою лампою 86 KB
  Якщо напруга досягне певної величини яка називається напругою запалювання U3 лампа спалахне і струм стрибком досягне скінченої величини I3. Коли напруга спаде до величини U3 лампа не погасне. За другим правилом Кірхгофа для цього кола маємо 1 де Uk напруга на конденсаторі та неоновій лампі яка підключена до нього паралельно.15 видно що напруга на конденсаторі монотонно зростає із швидкістю яка залежить від величини добутку RC.
22827. КАТЕГОРІЙНО-ПОНЯТІЙНИЙ АПАРАТ З БЕЗПЕКИ ЖИТТЄДІЯЛЬНОСТІ, ТАКСОНОМІЯ НЕБЕЗПЕК 92 KB
  Виходячи з сучасних уявлень безпека життєдіяльності є багатогранним обєктом розуміння і сприйняття дійсності, який потребує інтеграції різних стратегій, сфер, аспектів, форм і рівнів пізнання. Складовими цієї галузі є різноманітні науки про безпеку. У всьому світі велика увага приділяється вивченню дисциплін
22828. ВИМІРЮВАННЯ НАПРУЖЕННОСТІ МАГНІТНОГО ПОЛЯ ВЗДОВЖ ОСІ СОЛЕНОЇДА ІНДУКЦІЙНАМ МЕТОДОМ 141 KB
  ВИМІРЮВАННЯ НАПРУЖЕННОСТІ МАГНІТНОГО ПОЛЯ ВЗДОВЖ ОСІ СОЛЕНОЇДА ІНДУКЦІЙНАМ МЕТОДОМ Явище електромагнітної індукції полягає у виникненні е. Напруженість магнітного поля в будьякій точці А що лежить на осі ОО соленоїда чисельно дорівнює алгебраїчній сумі напруженостей магнітних полів створених у точці А всіма витками спрямована вздовж осі за правилом свердлика 3 Де n число витків за одиницю довжини соленоїда І величина струму; кути що утворює радіусвектор проведений з точки А до крайніх витків соленоїда мал....
22829. ЯВИЩЕ ГІСТЕРЕЗИСУ В ФЕРОМАГНЕТИКУ 115 KB
  ЯВИЩЕ ГІСТЕРЕЗИСУ В ФЕРОМАГНЕТИКУ Особливий клас магнетиків становлять феромагнетики речовини здатні мати намагнічення у відсутності зовнішнього магнітного поля.21 наведена залежність модуля вектора намагнічення від напруженості зовнішнього поля для феромагнетика з попереднім магнітним полем рівним нулеві основна або нульова крива намагнічення . При деякому значенні H намагнічення досягає насичення оскільки вектор магнітної індукції та вектора намагнічення звязані співвідношенням то при досягненні вектор стає функцією від:...
22830. ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ НОСІЇВ ЗАРЯДУ В НАПІВПРОВІДНИКАХ З ЕФЕКТУ ХОЛЛА 71.5 KB
  ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ НОСІЇВ ЗАРЯДУ В НАПІВПРОВІДНИКАХ З ЕФЕКТУ ХОЛЛА В основу вимірювання концентрації електронів покладено явище Холла яке полягає у виникненні поперечної різниці потенціалів при проходженні струму по провіднику напівпровіднику який знаходиться в магнітному полі перпендикулярному до лінії струму. Ефект Холла в електронній теорії пояснюється так. Введемо сталу Холла 7 Тоді 8 Отже згідно з формулою 8 вимірявши силу струму I у...