38012

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ И СЛОЖНОСТИ ИССЛЕДУЕМЫХ АЛГОРИТМОВ

Лабораторная работа

Информатика, кибернетика и программирование

Краткая теория Теория сложности алгоритмов Сложность алгоритма характеристика алгоритма определяющая зависимость времени выполнения программы описывающей этот алгоритм от объёма обрабатываемых данных. Формально определяется как порядок функции выражающей время работы алгоритма. Эффективность алгоритма временная сложность в самом худшем случае Ofn или просто fn.

Русский

2013-09-25

146.5 KB

27 чел.

5

Лабораторная работа № 8

«ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ И СЛОЖНОСТИ ИССЛЕДУЕМЫХ АЛГОРИТМОВ»

Цель работы: научиться вычислять эффективность и сложность исследуемого алгоритма.

Задача работы: овладеть навыками определения эффективности и сложности исследуемых алгоритмов.

Порядок работы :

  1.  изучить описание лабораторной работы;
  2.  по заданию, данному преподавателем, разработать алгоритм решения задачи;
  3.  исследовать программу, составленную на любом языке;
  4.  решить задачу;
  5.  оформить отчет.

Краткая теория

Теория сложности алгоритмов

Сложность алгоритма - характеристика алгоритма, определяющая зависимость времени выполнения программы, описывающей этот алгоритм, от объёма обрабатываемых данных. Сложность можно оценить по содержанию программы. Так, если в программе выполняется вложенный цикл с числом шагов внешнего цикла m и вложенного цикла n, то сложность будет пропорциональна mn. Формально определяется как порядок функции, выражающей время работы алгоритма.

Эффективность алгоритма – временная сложность в самом худшем случае O(f(n)) или просто f(n). Функция от n f(n) равна максимальному числу шагов, выполняемых алгоритмом и имеет порядок роста O(f(n)), причём максимум берётся по всем входным данным длины n. Существует константа c, такая, что для достаточно больших n величина cf(n) является верхней границей количества шагов, выполняемых алгоритмом для любых входных данных длины n. Анализ рекурсивных программ значительно сложнее обычных, так как зачастую требуется решать дифференциальные уравнения. Для их анализа необходимо применять методы похожие на методы решения дифференциальных уравнений. При анализе рекурсивных процедур составляются рекуррентные соотношения, которые получают исходя из структуры рекурсивного алгоритма, отражающие характер рекурсивного вызова алгоритма и зависящие от величины входных данных.

Решение рекуррентных соотношений

Существуют 3 способа решения рекуррентных соотношений:

  1.  Находится функция f(n), которая мажорирует T(n) для всех значений n, т.е. для всех n выполняется неравенство T(n)<=f(n). Иногда только лишь предположительно определяется вид функции f(n), зависящей от некоторых неопределённых параметров. Далее подбираются такие параметры, что для всех n будет выполняться T(n)<=f(n).
  2.  Последовательно подставляются в рекуррентное соотношение зависимости T(m), где m<n, так, чтобы из правой части были исключены все T(m) с m>1, оставив толь ко T(1). Но так как T(1) всегда является константой, то получится под конец зависимость от констант и n.
  3.  Использование общих решений.

Оценка решений рекуррентных соотношений

Рассмотрим пример процедуры-функции mergesort сортировки слиянием, входные данные которой – это список элементов длиной n, а выходные – это отсортированный список. Эта функция так же использует процедуру слияния merge, входные данные которой – это два отсортированных списка L1 и L2. Данная процедура просматривает эти списки поэлементно, начиная с больших. На каждом шаге наибольший элемент из двух сравниваемых удаляется из своего списка и помещается в выходные данные. Получается тем самым единый отсортированный список, содержащий все элементы L1 и L2. Процедура на списках merge, длиной n/2, выполняется за время порядка O(n).

function mergesort(L:LIST; n:integer):LIST;{L - список типа LIST длиной n, где n является степенью числа 2}

var    L1,L2:LIST;

begin

if n=1 then return(L)

else begin

разбиение L на две части L1 и L2, каждая длиной n/2;

return(merge(mergesort(L1, n/2),(mergesort(L2, n/2)));

end;

end; {mergesort}

Пусть T(n) - время выполнения процедуры mergesort в самом худшем случае. Анализируя текст программы, запишем рекуррентное неравенство, которое ограничивает сверху T(n):

                               (7.1)

В данном неравенстве c1 – это количество шагов выполняемых алгоритмом над списком L длиной 1. Время работы процедуры можно разбить на две части, если n>1. Первая часть состоит из: 1) проверки n<>1, 2) разбивки L, на две равные части и 3) вызова процедуры merge. Эти три операции требуют или фиксированное время для выполнения первой части или пропорционального n для второй и третьей. Следовательно, можно выбрать такую константу c2, которая будет создавать ограничение для выполнения данной части процедуры равное c2*n. Вторая часть процедуры mergesort состоит из двух рекурсивных вызовов этой процедуры для списков длины n/2, которые будут требовать время 2T(n/2). Так было получено второе неравенство.

Формулу верхней границы в замкнутой форме можно получить лишь, если n является степенью числа 2. При выполнении этого условия T(n) можно оценить для любых n. Другими словами, если n лежит в промежутке , то значение T(n) располагается между T(2i)…T(2i+1). Нетрудно заметить, что выражение 2T(n) можно заменить на T((n+1)/2)+T((n-1)/2) для нечётных n>1. Таким образом, можно найти решение рекуррентного соотношения в замкнутой форме для любых n. Замкнутая форма - это вид функции T(n), не включающей в себя никаких выражений T(m) для m<n.

Произведём оценку рекуррентного соотношения (7.1).

Заменим в этом соотношении n на n/2 и получим

                    (7.2)

Подставим правую часть (7. 2) в (7. 1)

(7.3)

Заменяя аналогичным образом в (7. 1) n на n/4, получаем оценку для T(n/4): T(n/4)2T(n/8)+c2*n/4. Подставим эту оценку в (7.3) и получим такое выражение:

                     (7.4)

Проанализировав характер изменения T(n) преобразуем (7.1) к виду:

                   (7.5)

Предположим, что , тогда при i=k в правой части (7.5) находится T(1):

                  (7.6)

Так как , то ,а T(1) c1, то (7.6) можно преобразовать

.                         (7.7)

Неравенство (7.7) демонстрирует верхнюю границу для T(n), а порядок роста T(n) не более O(n logn).

Задания по вариантам:

Для своего варианта – столбец A, выбрать рекуррентное уравнение и значение T(1). Необходимо решить данное рекуррентное соотношение и определить эффективность алгоритма, описанного функцией T(n).

Таблица 1

Задание на лабораторную работу №8

A

Уравнение

T(1)

A

Уравнение

T(1)

1

T(n)=3T(n/2)+n

2

18

T(n)=3T(n-1)+

9

2

T(n)=2T(n-1)+2

2

19

T(n)=3T(n/2)+n

9

3

T(n)=T(n/2)+

5

20

T(n)=3T(n-1)+9

1

4

T(n)=2T(n/2)+n

2

21

T(n)=2T(n/2)+

2

5

T(n)=T(n/2)+logn

1

22

T(n)=2T(n/2)+n

1

6

T(n)=9T(n/2)+

9

23

T(n)=T(n/2)+3logn

3

7

T(n)=2T(n/2)+5

3

24

T(n)=8T(n/2)+

2

8

T(n)=3T(n/2)+n

3

25

T(n)=T(n/2)+9

3

9

T(n)=16T(n-1)+4

3

26

T(n)=3T(n/2)+n

4

10

T(n)=T(n-1)+3n

3

27

T(n)=2T(n-1)+9

1

11

T(n)=2T(n/2)+n

8

28

T(n)=2T(n-1)+3n

6

12

T(n)=4T(n/2)+2

8

29

T(n)=2T(n/2)+n

4

13

T(n)=3T(n/2)+

3

30

T(n)=(T(n-1))2

4

14

T(n)=2T(n/2)+

4

31

T(n)=T(n/2)+2

1

15

T(n)=2T(n/2)+logn

2

32

T(n)=2T(n/2)+

16

16

T(n)=(T(n-1))2

4

33

T(n)=T(n/2)+2logn

2

17

T(n)=4T(n/2)+4

4

34

T(n)=2T(n-1)+2

2

Продолжение таблицы 1

A

Уравнение

T(1)

A

Уравнение

T(1)

35

T(n)=(T(n-1))2

9

43

T(n)=3T(n/2)+3

3

36

T(n)=T(n-1)+3n3

3

44

T(n)=3T(n/2)+n

8

37

T(n)=3T(n/2)+n

1

45

T(n)=3T(n-1)+2

10

38

T(n)=4T(n-1)+2

8

46

T(n)=2T(n-1)+2n

2

39

T(n)=2T(n/2)+3n3

1

47

T(n)=2T(n/2)+n

3

40

T(n)=2T(n/2)+n

64

48

T(n)=9T(n/2)+1

3

41

T(n)=9T(n/2)+logn

3

49

T(n)=T(n/2)+5 n3

5

42

T(n)=4T(n/2)+ n2

4

50

T(n)=6T(n/2)+ n2

8


 

А также другие работы, которые могут Вас заинтересовать

62518. Урок - путешествие по теме Great Britain 20.5 KB
  Today we are going to make an enjoyable trip to a wonderful country, situated on an island. We`ll speak about its position and history, rivers and mountains, it`s beautiful capital. Listen to the lines from the poem of the famous writer and poet R. Kipling about this country.
62520. Словесные информационные модели. Научные и художественные описания 270.53 KB
  Цели урока: формировать представления учащихся о словесных информационных моделях. Основные понятия: модель; информационная модель; словесная информационная модель.
62522. Географія світового транспорту. Зовнішні економічні зв’язки. Міжнародний туризм 74.77 KB
  Мета: охарактеризувати значення транспорту у світовому господарстві повторити та поглибити знання про основні технікоекономічні показники роботи транспорту види транспорту; головні форми міжнародного співробітництва визначити обсяги та структуру...
62523. Моє здоров’я 16.76 KB
  Поняття про здоровя. Здоровя це не відсутність хвороб а фізична соціальна психологічна гармонія людини доброзичливі стосунки з людьми з природою і з самим собою. Психологи виділяють кілька видів здоровя: фізичне інтелектуальне особистісне соціальне емоційне і духовне.
62524. Яка ж вона, жінка ХХІ століття 42.55 KB
  Мета: активізувати естетичні переживання в поєднанні з інтелектуальним проникненням в суть проблеми сприяти її самостійному розвязанню учнями вираженню ними власних думок; стимулювати до роздумів визначити ставлення учнів до проблеми рівноправя жінок і чоловіків...
62525. Счастливый случай игра для 6 класса 21.95 KB
  Усвоение основных понятий и закономерностей в курсе географии 6 класса проверка и уточнение своих представлений и взглядов по пройденным темам.
62526. Урок-игра: Ирландия 22.31 KB
  Образовательные задачи: Совершенствовать навыки чтения и аудирования, расширяя кругозор учащихся. Повторить грамматический материал - составление разных типов вопросов.