38013

ИЗУЧЕНИЕ БЕТА –АКТИВНОСТИ

Лабораторная работа

Физика

10 ЛАБОРАТОРНАЯ РАБОТА № 95 ИЗУЧЕНИЕ БЕТА –АКТИВНОСТИ Цель работы Изучение явления бета распада определение длины пробега –частиц и максимальной энергии –частиц радиоактивного источника. Например радиоактивный изотоп водорода испускает –частицы с Еmx = 18 кэВ а изотоп азота – с Еmx = 166 МэВ. Типичная кривая распределения –частиц по энергиям изображена на рис.1 где dN dE– число –частиц имеющих полную энергию от Е до Е dЕ Еmx –максимальная энергия –частиц данного радиоактивного вещества.

Русский

2013-09-25

145.5 KB

3 чел.

Содержание

1. Цель работы…………………………………………………………....4

2. Теоретическая часть..………………………………………………….4

3. Описание установки…………………………………………………...8

4. Требования по технике безопасности………………………………..8

5. Порядок выполнения работы …………………………………………9

6. Требования к отчету………………………………………………….10

7. Контрольные вопросы……………………………………………….10

Список литературы…………………………………………………...10


ЛАБОРАТОРНАЯ РАБОТА № 95

ИЗУЧЕНИЕ БЕТА –АКТИВНОСТИ

  1.  Цель работы

Изучение явления бета распада, определение длины пробега     –частиц и максимальной энергии –частиц радиоактивного источника.

2. Теоретическая часть

Бета–распадом (–распадом) называется самопроизвольное превращение ядер, при котором их массовое число не меняется, а заряд увеличивается или уменьшается на единицу. Этот заряд уносится электроном или позитроном, покидающим ядро:

1)При электронном –распаде один из нейтронов n ядра превращается в протон р и образуются электрон и антинейтрино (1);

                                                                   (1)

2) При позитронном – распаде происходит превращение одного из протонов ядра в нейтрон с испусканием нейтрино (2):

                      p  n + +1 + ,          (2)

3) При захвате атомного электрона (например, К–захвате) один из протонов ядра превращается в нейтрон с излучением нейтрино (3):

                     p + e  n +            (3)

Характерной особенностью –распада является то, что испускаемые электроны (или позитроны) имеют всевозможные значения кинетической энергии от нуля до некоторой вполне определенной энергии Еmax (граничной энергии –спектра), значительно различающейся для разных радиоактивных веществ.

Например, радиоактивный изотоп водорода испускает                –частицы с Еmax = 18 кэВ, а изотоп азота – с Еmax  = 16,6 МэВ.

Таким образом, энергетический спектр электронов, испускаемых при –распаде, непрерывен. Типичная кривая распределения –частиц по энергиям изображена на рис.1, где dN/dE– число –частиц, имеющих полную энергию от Е до Е + dЕ, Еmax –максимальная энергия –частиц данного радиоактивного вещества.

Рис.1. Типичный энергетический спектр для –частиц.

Максимальная энергия –частиц определяет энергию –распада и является важной физической величиной.

Непрерывность рассматриваемого спектра была объяснена в 1931г. Паули, который предположил, что при –распаде наряду с электроном происходит испускание другой частицы–нейтрино. Обе частицы рождаются в самом акте распада, причем возможная энергия Еmax распределяется между электроном и нейтрино.

Распределение максимальной энергии неодинаково, и для различных изотопов граничная энергия –частиц составляет от 0,25 до 0,46 Еmax. Проходя через вещество, –частицы теряют энергию и отклоняются от своего первоначального направления, то есть рассеиваются рис. 2.

Рис. 2. Схема рассеяния –частиц.

Рассматривая пучок электронов, падающий нормально на поверхность фильтра, можно отметить, что электроны с большей энергией пройдут фильтр, испытывая лишь малые отклонения. Более медленные электроны подвергаются большему рассеянию, их угловое распределение приближается к гауссовскому, а траектория движения искривляется. При сильном рассеянии теряет смысл понятие направления движения электронов, рассматривается процесс диффузии электронов.

Число электронов, прошедших через фольгу, есть монотонно убывающая функция толщины фильтра, так как с увеличением толщины фильтра имеет место процесс обратной диффузии, когда электроны отклоняются на углы, большие 90 градусов. Кроме того, при увеличении толщины фильтра энергия электронов уменьшается, а часть их тормозится фактически до нулевой энергии, то есть останавливается. Предельная толщина фильтра, практически полностью задерживающая падающие электроны, называется эффективным пробегом электрона. Этот пробег определяется по кривым поглощения. Типичная кривая поглощения для непрерывного –спектра представлена на рис 3, где R max –толщина поглотителя, равная пробегу –частиц в данном веществе.

Рис. 3. Кривая поглощения –частиц.

Кривая поглощения описывается экспоненциальной зависимостью (4):

                                                    Nd = N0ed,                                           (4)

где N0–число частиц, падающих за 1с на поверхность фильтра,           µ–массовый коэффициент поглощения. Величина d связана с линейной толщиной l соотношением (5):

                                                                                                (5)

где –плотность вещества фильтра, Al = 2,7 г/см3. Для определения пробега удобно построить данную кривую в полулогарифмическом масштабе рис.4.

               

Рис.4. Кривая поглощения в полулогарифмическом масштабе.

В этом случае можно выделить прямолинейную часть кривой поглощения и использовать метод половинного поглощения.

Метод половинного поглощения состоит в следующем. По графику зависимости ln (NNф) = f(d) определить среднюю толщину слоя половинного поглощения d1/2, необходимого для уменьшения вдвое начальной интенсивности –излучения, то есть

                                                ,                            (6)

из полулогарифмической зависимости получаем:

                                                      (7)                 

Вычисленное для нескольких точек и усредненное значение d1/2 позволяет определить длину пробега электронов Rm по формуле (8):

                                            d1/2 = 0,1 Rm,                       (8)

Для оценки максимальной энергии –излучения радиоактивного изотопа следует использовать эмпирические зависимости между Еmax  и Rm (9):

            Rm = 0,542Е0,133 г/см2,  0,8  Е  3,0 МэВ,              (9)

                   Rm = 0,407Е1.38 г/см2,       0,15  Е  0,8 МэВ,                (9а)

(для источника Sr (z=90)+ Y (z=90) использовать формулу (9)).

3.Описание установки

Принципиальная схема установки приведена на рис. 5.

Рис.5. Схема установки.

Установка состоит из двух блоков: блока детектирования и блока управления и индикации (БУИ), соединенных между собой кабелем.

Блок детектирования содержит источник –частиц (указывается преподавателем), счетчик –частиц и набор алюминиевых пластин с указанной на них толщиной поглотителя в мм. Расстояние между источником и детектором можно регулировать, перемещая источник вдоль скамьи. Нужная толщина фильтра достигается путем ввода/вывода пластин в кассету.

Измерительный блок (устройство пересчета импульсов) имеет следующие кнопки управления:

«Сеть» – осуществляет включение напряжения питания счетчика   220 В (на задней панели прибора);

«Пуск» – включает таймер и отсчет измеряемых импульсов одновременно;

«Стоп» – одновременная их остановка;

«Сброс» – обнуляет их показания;

«Время, сек» – установка необходимого времени измерения:

индикатор «кол. частиц» – показывает число зарегистрированных частиц;

индикатор «сек» – показывает текущее время измерения.

  1.  Требования по технике безопасности

В данной работе факторами повышенной опасности являются электрический ток (напряжение) и источник бета частиц. Защита от этих факторов заключается в соблюдение правил безопасности, наличии заземления и низкой активности источника, которая обеспечивает гарантированную безопасность без применения специальных средств зашиты.

4.1.Перед выполнением работы внимательно ознакомьтесь с заданием и оборудованием.

4.2. Не  работайте  на  установке  без  защитного  заземления установки.

  1.  Немедленно сообщите преподавателю о замеченных неисправностях.
    1.  Не оставляйте работающую установку без присмотра.

  1.  Порядок выполнения работы

  1.  Включить «Сеть» и прогреть установку в течение 1 мин. Установить нули во всех разрядах цифровых индикаторов.
  2.  Определить интенсивность фона при максимальной толщине поглотителя и минимальном расстоянии его до детектора (10). Время измерения t для всех опытов должно соответствовать не менее 200 регистрируемым импульсам с целью уменьшения относительной погрешности. Среднее значение фона определить по 2–3 измерениям, вычислить абсолютную и относительную ошибки измерения.

3. Определить интенсивность потока –частиц без поглотителя и с поглотителем в виде алюминиевых пластин, меняя их суммарную толщину через 0,5 мм до максимальной 4 мм.

4. Повторить измерения, меняя расстояние от источника до детектора.

5. Выполнить аналогичные измерения для медных пластин, меняя толщину поглотителя от 0,25 мм (1 пластина) до 1 мм (4 пластины).

6.Данные по измерениям поглощения –частиц свести в таблицу:

7. На основе таблицы построить кривые поглощения для разных материалов фильтра, дающие зависимость ln Nd(d).

8. По  полученным  кривым  определить  слой  половинного поглощения и максимальный пробег частиц.

9. Оценить  максимальную  энергию  –частиц исследуемого радиоактивного изотопа и сравнить результаты, полученные на разных материалах поглотителя.

10. Сделать вывод.

Толщина
поглотителя

Количество
зарегистриро-ванных частиц

Время
наблюдения

Интенсивность потока с фоном

Интенсивность
потока без фона

l,

мм

d,

г/см2

n,

имп

t,

мин

N = n/t,

имп/мин

Nd = NNФ, имп/мин

6. Требования к отчету

Отчет по лабораторной работе должен содержать:

  1.  номер, название и цель работы;
  2.  основные положения теории метода и расчетные формулы;
  3.  схему установки;
  4.  результаты измерений и расчетов;
  5.  выводы по итогам работы.

7. Контрольные вопросы

  1.  Что называется –распадом? Какие бывают виды распада?
  2.  Как распределяется энергия бета распада между электроном и антинейтрино?
  3.  Чем определяется энергия - спектра?
  4.  Каков механизм потери энергии электронов при прохождении в веществе?
  5.  В чем состоит метод половинного поглощения.
  6.  Что такое фон счетчика, как он измеряется?

Список литературы

  1.  Детлаф А.А., Яворский Б.М., Курс физики. – М.: Высшая школа, 1989,
  2.  Сивухин Д.В., Общий курс физики. – М.: Наука, 1989, Т.5, часть 2,
  3.  Савельев И.В. Курс физики. – М.: Наука, 1989, Т.3

4. Лабораторные занятия по физике: Учебное пособие/под ред. Гольдина Л.Л. – М.: Наука, 1983.

10


 

А также другие работы, которые могут Вас заинтересовать

12787. Группирование элементов (span и div) 15.67 KB
  Группирование элементов span и div Элементы span и div используются для структурирования документа часто совместно с атрибутами class и id. В этом уроке мы подробно рассмотрим как использовать span и div поскольку эти элементы HTML имеют важнейшее значение в CSS. Группиро...
12788. Боксовая модель в CSS 24.21 KB
  Боксовая модель Боксовая модель в CSS описывает боксы генерируемые для HTMLэлементов. Боксовая модель также имеет детальные опции для определения полей рамок заполнения и содержимого каждого элемента. На диаграмме далее показано как построена боксовая модель: Боксов...
12789. Поля и заполнение 13.38 KB
  Поля и заполнение В предыдущем уроке мы рассмотрели боксовую модель. В этом уроке объясним как можно изменять представление элементов свойствами margin и padding. Установим поля элемента Установим заполнение элемента Установим поля элемента У элемента ест
12790. Рамки. Примеры определения рамок 23.33 KB
  Рамки Рамки имеют многообразное применение например как декоративный элемент или для отделения двух объектов. CSS предоставляет бесчисленное множество вариантов использования рамок. borderwidth bordercolor borderstyle Примеры определения рамок border Толщи
12791. height/высота и width/ширина 12.79 KB
  height/высота и width/ширина До сих пор мы особо не заботились о размерах элементов с которыми работали. На этой лабораторной посмотрим как легко можно определять высоту и ширину элемента. width height Установка ширины [width] Свойством width вы можете определять шири
12792. Всплывающие элементы (поплавки) 39.32 KB
  Всплывающие элементы поплавки Элемент может всплывать вправо или влево с помощью свойства float. То есть бокс с его содержимым может всплывать вправо или влево в окне документа или содержащего бокса см. в лабораторной №7 описание боксовой модели. Принципы показаны на ...
12793. Позиционирование элементов 41.88 KB
  Позиционирование элементов При помощи CSSпозиционирования вы можете разместить элемент точно в нужном месте страницы. Вместе с поплавками см. лаб. № 11 позиционирование даёт вам большие возможности для создания точного и навороченного дизайна. В этом уроке мы обсуди
12794. Наслоение с помощью z-index (Слои) 21.24 KB
  Наслоение с помощью zindex Слои CSS оперирует в трёх измерениях высота ширина и глубина. Мы работали в двух измерениях на протяжении всех предшествующих уроков. В этом уроке мы научимся создавать слои/layers. Коротко говоря упорядочивать элементы так чтобы они перекрывали...
12795. Перспективы развития рынка клубного туризма в Крыму и Краснодарском крае 664.5 KB
  Исследовать историю развития клубного туризма. Определить современные направления клубного туризма. Представить анализ основных стран клубного туризма. Рассмотреть особенности организации клубного туризма. Изучить особенности внутреннего клубного туризма. Провести анализ клубного туризма в России