3825

Характеристики линий связи в КС

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Введение В соответствии с объектом и предметом исследования были поставлены следующие задачи: осветить основные исторические этапы становления и развития линий связи перечислить основные виды каналов связи для компьютерных сетей рассмотреть сущест...

Русский

2012-11-08

200.5 KB

176 чел.

Введение

В соответствии с объектом и предметом исследования были поставлены следующие задачи: осветить основные исторические этапы становления и развития линий связи; перечислить основные виды каналов связи для компьютерных сетей; рассмотреть существующие стандарты линий связи.

За последний этап развития в области связи, максимальное распространение приобрели оптические кабели и волоконно-оптические системы передачи, которые по своим характеристикам намного превосходят все традиционные кабели системы связи. Связь по волоконно-оптическим  кабелям, является одним из ключевых направлений научно-технического прогресса. Кабели и оптические системы применяются не только для вычислительной техники, но ещё и для организации телефонной городской, а так же междугородней связи,   кабельнoго  телевидения, видеотелефoнии, радиoвещания, технологической  связи и т.д.

В настоящее время, с каждым днем все более увеличивается количество корпоративных сетей, существующие сети расширяются, возрастает число пользователей этих сетей. Причем растут также и требования. Главными направлениями социального и экономического развития страны определена программа дальнейшего развития связи, которая предусматривает продолжить развитие и повысить надёжность связи страны на базе новейших достижений науки и техники и развить высокоавтоматизированное производство волоконно-оптических кабелей связи.

Немаловажное место занимают кабельные линии связи, имеющие хорошую защищенностью каналов связи от атмосферных влияний и различного рода помех, высокой устойчивостью и долговечностью. Данные качества особенно проявляются на современном этапе развития техники кабельной связи с применением многоканальных систем связи.

Цель работы – рассмотрение понятия линий связи и более детальное изучение использования их в компьютерных сетях. Объектом исследования данной работы являются линии связи. Предметом исследования – основные виды и стандарты линий связи, применяемые для компьютерных сетей.

Курсовая работа состоит из трех глав. В первой главе представлено историческое развитие каналов связи. Во второй главе раскрывается понятие линий связи, приводятся их основные характеристики, перечислятся основные виды каналов связи, применяемые в компьютерных сетях: «витая пара», коаксиальный кабель, волоконно-оптический кабель; беспроводная среда передачи данных. В третьей главе рассматриваются основные стандарты линий связи для компьютерных сетей.


Основная часть

1 Основные виды линии связи

1.1  Кабель типа «витая пара» 

В кабелях данного типа ("витая пара") для передачи сигналов используются одна или более пар свитых медных проводников. Данный кабель обширно используется в телекоммуникациях.

Так как медные проводники, пропускающие электрические сигналы, тесно прилегают друг к другу, каждый из них может создавать помехи в другом. Такое взаимодействие проводников называется перекрестными наводками. Для снижения перекрестных и внешних помех проводники перекручиваются. Перекручивание дает возможность сигналам, испускаемым проводниками, гасить друг друга и предохранять кабель от внешних помех

На рисунке А-1 изображен кабель «витая пара».

Существует два типа кабеля «витая пара»:

  •  Неэкранированная «витая пара» (Unshielded Twisted Pair, UTP);
  •  Экранированная «витая пара»(Shielded Twisted Pair, STP).

Кабель типа "неэкранированная витая пара" (UТР) содержит несколько витых пар в пластмассовой оболочке.

На рисунке А-2 изображена неэкранированная «витая пара».

Кабель "неэкранированная витая пара" может состоять из четырех или восьми проводников. Кабель UТР с четырьмя жилами называется двухпарным. Сетевые топологии, использующие UТР, требуют применения как минимум двухпарного кабеля. 1

Поскольку кабель UТР первоначально применялся в телефонных системах, прокладка UТР часто напоминает установку телефонных систем. Для четырехпарного кабеля необходим модульный разъем Rj-45. Для двухпарного кабеля нужен телефонный разъем Rj-11. Два разъема (коннектора) подключаются к обоим концам соединительного кабеля. Один разъем вставляется в компьютер или другое устройство, а другой — в стенную кабельную розетку. Стенная розетка соединяет ответвительный кабель сети (абонентский отвод) с основным кабелем.

Основной кабель подключается к коммутационной панели. Коммутационная панель обеспечивает связь с помощью основных соединительных кабелей с другими пользовательскими и коммуникационными устройствами.

Основные характеристики кабеля:

  •  стоимость - стоимость кабеля UТР очень низка по сравнению с другой средой передачи данных;
  •  установка - прокладка кабеля UТР проста и не требует особой квалификации. Поскольку для UТР необходимо оборудование, аналогичное аппаратуре телефонной связи, обслуживание и реконфигурация сети будет  несложной;
  •  пропускная способность - при использовании большинства имеющихся технологий кабель UТР поддерживает передачу данных со скоростью от 1 до 155 Мбит/с на расстояние до 100 метров. Наиболее распространена скорость передачи 10 Мбит/с;
  •  число узлов - поскольку кабелем UТР можно соединить только два компьютера, число компьютеров в сети UТР не может ограничиватся  кабелем. Определяется концентратором (или концентраторами), соединяющим эти кабели. В сети Ethernet верхний предел составляет 75 узлов на один домен, но фактически зависит от типа трафика в сети. Согласно спецификации, верхний предел равен 1024 узлам, но вряд ли удастся его достичь;
  •  затухание - сигнал, передаваемый по медному кабелю, обычно быстро затухает. Из-за этого при использовании UТР расстояние обычно ограничивается 100 метрами;
  •  электромагнитные помехи - кабель UТР сильно подвержен ЕМI. Скручивание значительно понижает перекрестные наводки, но все же некоторые шумы остаются. Кроме того, электромагнитные волны могут испускаться такими внешними устройствами, как электрические моторы и люминесцентные лампы. Поскольку медный кабель также генерирует сигналы, UТР подвержен перехвату информации.

Единственное в чем заключается отличие между «экранированной витой парой» (SТР) и UТР это то, что кабель SТР экранирован (обычно покрыт алюминиевой/полиэстеровой оболочкой). Данный экран защищает внутреннюю оболочку кабеля

На рисунке А-3 изображена экранированная «витая пара».

SТР был первым кабелем "витая пара", использованным в локальной сети. В настоящее время широко используются оба типа витой пары.                                                                                                                                     

SТР обладает следующими характеристиками:

  •  стоимость - основная масса кабелей SТР имеет высокую стоимость. Кабели SТР дороже, чем UТР и тонкий коаксиальный кабель, но дешевле, чем толстый коаксиальный или волоконно-оптический кабель;
  •  установка - необходимость применения специальных разъемов делает установку SТР более трудной, чем UТР. Разъемы должны заземляться. Для упрощения следует использовать стандартизированные кабели. Поскольку SТР — жесткий и толстый кабель, работать с ним довольно трудно;
  •  пропускная способность – так как экранирование уменьшает воздействие внешних помех, теоретически SТР позволяет передавать 500 Мбит/с на расстояние 100 м. Между тем лишь в немногих инсталляциях скорость передачи данных превышает 155 Мбит/с. В настоящее время в большинстве сетей SТР данные передаются со скоростью 16 Мбит/с;
  •  число узлов - поскольку кабелем SТР можно соединить только два компьютера, число узлов в сети SТР ограничивает концентратором. В сети Token Ring полезный верхний предел составляет 200 узлов на одно кольцо, но он зависит от трафика в сети. Согласно спецификации верхний предел составляет 270 узлов;2
  •  затухание - стандартное ограничение составляет 100 метров;
  •  электромагнитные помехи - самая существенная разница между SТР и UГР состоит в уменьшении влияния ЕМI. Экранирование в значительной степени блокирует помехи, однако, как любой медный кабель, SТР все равно остается подверженным ЕМI и перехвату информации.

1.2  Коаксиальный кабель

Коаксиальный кабель имеет два проводника с общей центральной осью. В центре такого кабеля располжен сплошной медный проводник или многожильный провод. Он заключен в пластиковый вспененный изолированный слой. Такой же изолирующий слой покрывает второй проводник — цилиндрическую оплетку, металлическую фольгу или то и другое. Оплетка предохраняет провод от электромагнитных помех. Ее часто называют экраном. Внешний слой такого кабеля образует жесткая пластмассовая оболочка, обеспечивающая защиту и изоляцию.

На рисунке А-4 изображена коаксиальный кабель.

Наибольшее применение имеют кабели среднего (2,6/9,5мм) и малогабаритного (1,2/4,6мм) типов. В некoторых случаях применяют комбинированные кoнструкции кабелей, состоящие из 4, 6, 8 коаксиальных пар среднего типа и 4, 6 малогабаритных пар. Средние коаксиальные пары предназначаются для организации многоканальной связи и телевидения на большие расстoяния между окoнечными пунктами и крупными узлами связи. Малoгабаритные коаксиальные кабели предназначены для строительства кабельных магистралей ограниченной протяженности, рокадных линий между магистралями,   устройства глубоких вводов радиoрелейных линий и обеспечения oбластных связей. Дoстоинствами этих кабелей являются простота конструкции, дешевизна и технологичность их изготовления.

Сети на коаксиальном кабеле создаются путем объединения Т-образных секций в один длинный сегмент. Два свободных конца сегмента завершаются терминаторами. На рисунке А-5 изображены терминатор и Т-коннектор.  Персональный компьютер подключаются к одному из концов Т-образной секции. Данные передаются вдоль всего сегмента и достигают всех устройств, входящих в сегмент. На рисунке А-6 изображено соединение компьютеров с помощью коаксиального кабеля

Для того чтобы сеть действовала, весь сегмент обязан оставаться неповрежденным. Это значит, что, если какая-нибудь из секция кабеля повреждена либо отключена, то  и сеть работать не будет. В процессе модернизации сети (например, путем добавления новых ПК) происходит разрыв сегмента, что делает сеть временно неработоспособной. Коаксиальный кабель может использоваться только для сетей стандарта Ethernet.

Коаксиальный кабель имеет следующие характеристики:

  •  стоимость - коаксиальный кабель относительно недорог. Стоимость тонкого коаксиального кабеля меньше, чем SТР или UTР категории 5. Толстый коаксиальный кабель дороже SТР или UTР категории 5, но все же дешевле волоконно-оптического кабеля;
  •  установка - после небольшой практики подсоединение разъемов становится несложным, а сам кабель устойчив к различным повреждениям. Коаксиальный кабель требует наличия оконечной нагрузки и заземления. Заземление завершает электрическую цепь;
  •  пропускная способность - типичная скорость передачи данных для современной коаксиальной сети составляет 10 Мбит/с;
  •  число узлов - специфицируемый максимум числа узлов для сегмента тонкой Еthernet составляет 30, а для сегмента толстой Еthernet — 100 узлов;
  •  затухание - из-за использования медного кабеля сигнал в коаксиальном кабеле затухает, но в меньшей степени, чем в кабеле "витая пара". Длина кабельных сегментов ограничивается двумя тысячами метров;
  •  электромагнитные помехи - медный коаксиальный кабель остается подверженным ЕМI и перехвату информации. 3

1.3  Волоконно-оптический кабель 

Волоконно-оптический кабель передает не электрические, а световые сигналы. Он намного более эффективный, чем другая среда передачи данных. Когда снизится его стоимость, этот кабель станет оптимальным выбором для сетей.

Волоконно-оптический кабель имеет внутренний сердечник из стекла или пластика, проводящий свет. Внутренний сердечник кабеля покрыт оболочкой — слоем стекла, отражающим свет. Оптическое волокно заключено в защитную пластиковую оболочку, которая может иметь различную жесткость.  

На рисунке А-7 изображен пример двух типов волоконно-оптических кабелей

В жестких, усиленных конфигурациях волокна полностью "упакованы" в пластиковую оболочку, а для укрепления кабеля он иногда содержит усиливающие жилы. В облегченных конфигурациях между внутренней и внешней оболочкой оставлено пространство, заполненное гелем или другим специальным материалом. Внутренняя защитная оболочка обеспечивает необходимую жесткость, делающую кабель устойчивым к разрывам, а также перегреву или переохлаждению. Дополнительную защиту дает гель, усиливающие жилы и внешняя оболочка.

Кабель может содержать одно светопроводящее волокно, но обычно их несколько. Волоконно-оптический кабель компактнее и легче, чем медный. Диаметр одного волокна примерно соответствует человеческому волосу.

Имеется несколько типов оптических волокон, имеющих различные свойства. Они отличаются друг от друга зависимостью коэффициента преломления от радиуса центрального волокна. На рисунке А-8 изображены три вида волокна (А, Б и В). Буквами А и Б отмечен мультимодовый вид волокона. Тип Б имеет меньшую дисперсию времени распространения и по этой причине вносит меньшие искажения формы сигнала. Установлено, что, придавая световым импульсам определенную форму, дисперсионные эффекты можно полностью исключить. При этом появляется возможность передавать импульсы на расстояние в тысячи километров без искажения их формы. Такие импульсы называются солитонами.

Буквой В помечен одномодовый вид волокна (понятие мода связано с характером распространения электромагнитных волн). В упрощенном виде можно считать, что мода - это одна из возможных траекторий, по которой может распространяться свет в волокне. Чем больше мод, тем больше дисперсионное искажение формы сигнала. Одномодовое волокно позволяет получить полосу пропускания в диапазоне 50-100 ГГц-км. Эта разновидность волокна воспринимает меньшую долю света на входе, за то обеспечивает минимальное искажение сигнала и минимальные потери амплитуды. Следует также иметь в виду, что оборудование для работы с одномодовым волокном значительно дороже. Число мод, допускаемых волокном, в известной мере определяет его информационную емкость. Модовая дисперсия приводит к расплыванию импульсов и их наезжанию друг на друга. Дисперсия зависит от диаметра центральной части волокна и длины волны света.

Типичная волоконно-оптическая локальная сеть содержит компьютер или сетевое устройство с волоконно-оптической платой сетевого интерфейса (NIC). Эта плата обладает входным и выходным интерфейсом. Эти интерфейсы с помощью специальных волоконно-оптических разъемов соединяются непосредственно с волоконно-оптическими кабелями. Противоположный конец кабеля подключается к связному устройству или стыковочному центру.

Устройства оптического интерфейса преобразуют сигналы компьютера в свет, передаваемый через оптоволокно. Когда свет проходит через кабель и достигает приемного конца, тот же интерфейс превращает его обратно в сигналы компьютера. Для одномодовых кабелей импульсы света создаются диодами  с лазерной накачкой (ILD), генерирующими свет высокого качества. При приеме светового импульса он преобразуется в электрический сигнал P-i-N диодами (P-intrinsic-N) или фотодиодами.

Волоконно-оптический кабель имеет следующие характеристики:

  •  стоимость - волоконно-оптический кабель обходится несколько дороже, чем медный, но эта стоимость быстро снижается. Между тем сопутствующие затраты на оборудование здесь намного выше, чем для медного кабеля. Устройства одномодовой волоконной оптики дороже и сложнее в инсталляции, чем многомодовые устройства;
  •  установка - волоконно-оптический кабель сложнее прокладывать, чем медный. Каждое соединение и стык такого кабеля требуют тщательной работы, поскольку свет не должен встречаться в таких местах с какими-либо препятствиями. Кроме того, волоконно-оптический кабель имеет максимальный радиус изгиба, что существенно осложняет его прокладку;
  •  пропускная способность - благодаря использованию света, который имеет намного большую частоту, чем электрические сигналы, волоконно-оптический кабель может обеспечивать чрезвычайно высокую пропускную способность. Существующие технологии позволяют передавать по нему данные со скоростью от 100 Мбит/с до 2 Гбит/с;
  •  число узлов - поскольку волоконно-оптическим кабелем можно соединить только два компьютера, число узлов определяется концентратором. В сети Ethernet полезный верхний предел составляет 75 узлов на один домен;
  •  затухание - волоконно-оптический кабель дает намного меньшее затухание, чем медный, поскольку свет не излучается вне кабеля, как электрический сигнал в медных проводах. Волоконно-оптические кабели способны переносить сигнал на расстояние, измеряемое километрами. Несмотря на малое затухание, волоконной оптике свойственна другая проблема — хроматическая дисперсия. Волны света различной длины стекло пропускает по-разному, поэтому импульс света, проходя через кабель, "размазывается". Получается эффект радуги — световой сигнал разделяется на цветовые компоненты. В одномодовых кабелях передается свет одной частоты, поэтому здесь нет эффекта хроматической дисперсии. Одномодовый волоконно-оптический кабель можно использовать для прокладки сетевых магистралей длиной в сотни километров;
  •  электромагнитные помехи - волоконно-оптический кабель не подвержен электромагнитным помехам. Кроме того, он не дает утечки сигнала, что значительно осложняет перехват информации. Поскольку такой кабель не требует заземления, здесь нет проблемы сдвига электрического потенциала земли и искрения. Подобный тип кабеля идеально подходит для высоковольтных зон и там, где нужна высокая степень защиты информации.

  1.  Беспроводная среда передачи данных 

Беспроводная среда передачи данных полезна, когда большое расстояние или препятствия затрудняют применение другого носителя. Существуют три основных типа беспроводной среды передачи данных: радиоволны, микроволновое и инфракрасное излучение.

Радиоволны имеют частоту от 10 килогерц (КГц) до 1 гигагерца (ГГц). Диапазон спектра электромагнитных волн от 10 КГц до 1 ГГц называется радиочастотами (RF). Радиоволны бывают следующих типов: короткие; очень короткие частоты (VHF) — телевидение и радио FМ; ультракороткие (UHF) — радио и телевидение.

Деятельность на большинстве радиочастот регулируется. Для использования регулируемой частоты нужно получить лицензию в соответствующих местных органах надзора. Получение лицензии может стоить немалых средств, занять много времени и затруднить смену оборудования. Между тем лицензирование гарантирует, что в выделенном диапазоне будет чистый эфир.

Преимущество нерегулируемых частот в том, что на них накладываются незначительные ограничения. Между тем одно правило ограничивает их полезность: мощность оборудования для таких частот не должна превышать одного ватта. 4Смысл данного правила состоит в том, чтобы ограничить возможные помехи. Если говорить о сетях, то нерегулируемые радиокоммуникации ограничивают использование диапазонов частот.

Радиоволны могут распространяться направленно или не направленно. Для широковещательной трансляции радиосигналов используются различные виды антенн. Вот некоторые из них: вышка для ненаправленной радиопередачи;

полуволновая симметричная вибраторная антенна (диполь); провод произвольной длины; направленные антенны.

Мощность сигнала в диапазоне радиочастот определяется антенной и трансивером (устройством для приема и передачи сигнала в различных средах передачи данных, таких как медный кабель, радиоволны их волоконно-оптический кабель). Каждый диапазон частот имеет характеристики, влияющие на его использование в компьютерных сетях. Частоты, применяемые в компьютерных радиосетях, можно разбить на три категории:

  1.  одночастотные низкой мощности;
  2.  одночастотные высокой мощности;
  3.  с широким спектром.

Радиосети с одной частотой и сигналом низкой мощности работают только на одной частоте. Дальность действия маломощных устройств обычно ограничена 20 — 30 метрами. Хотя радиоволны низких частот могут проникать через некоторые материалы, малая мощность ограничивает их распространение небольшими открытыми пространствами.

Одночастотные трансиверы с сигналом низкой мощности имеют следующие характеристики:

  •  диапазон частот - одночастотные продукты с сигналом низкой мощности могут использовать любую радиочастоту, однако гигагерцовые диапазоны обеспечивают лучшую пропускную способность;
  •  стоимость - большинство решений имеет умеренную цену;
  •  инсталляция - если антенна и оборудование заранее конфигурированы, большинство систем просты в инсталляции. В то же время некоторые решения требуют советов экспертов. Для исключения влияния других сигналов иногда необходима диагностика;
  •  пропускная способность - скорость передачи данных составляет от 1 до 10 Мбит/с;

число узлов - данный тип сетей обычно реализуется как один домен, поэтому здесь действуют те же ограничения, что и в сети Ethernet с обычными

  •  кабелями. Число узлов ограничивается полосой частот и непроизводительными потерями коммуникаций;
  •  затухание - определяется радиочастотой и мощностью сигнала. Одночастотная маломощная передача дает большое затухание из-за малой мощности сигнала;
  •  электромагнитные помехи - устойчивость к ЕМI низкая, особенно в нижних диапазонах частот, где создают шумы электромоторы и различные промышленные устройства. Велика и вероятность перехвата информации, хотя из-за ограниченного радиуса действия он возможен обычно лишь в том же здании, где находится локальная сеть.

Одночастотная передача большой мощности аналогична одночастотной трансляции малой мощности, но позволяет перекрывать большие расстояния. Ее можно использовать для удаленной внешней передачи. При этом сигнал способен преодолевать зону прямой видимости и распространяться за горизонт, отражаясь от верхних слоев атмосферы Земли. Радиосети с одной частотой и сигналом большой мощности могут оказаться идеальным решением для организации мобильных сетей, обмена информацией с транспортным средством, кораблем или самолетом. Скорость передачи данных здесь аналогична одночастотным сетям с сигналом малой мощности, но информация передается на большие расстояния.

Радиосети с одной частотой и сигналом большой мощности имеют следующие характеристики:

  •  диапазон частот - как и в случае одночастотных сетей с сигналом малой мощности, радиосети большой мощности могут использовать любую радиочастоту, но для получения высокой пропускной способности предпочтительнее высокочастотный гигагерцовый диапазон;
  •  стоимость - радиотрансиверы относительно недороги, однако другое оборудование (антенны, повторители и т.д.) требует дополнительных вложений, что превращает одночастотные радиосети в умеренно или очень дорогое решение;
  •  инсталляция - построение таких сетей отличается сложностью. Мощное оборудование должны устанавливать и обслуживать квалифицированные специалисты. Его неправильная инсталляция или настройка может привести к снижению скорости передачи данных, потерю сигнала и даже к помехам от местного радио;
  •  пропускная способность составляет от 1 до 10 Мбит/с;
  •  число узлов - данный тип сетей обычно реализуется как один домен, поэтому здесь действуют те же ограничения, что и в сети Ethernet с обычными кабелями;
  •  затухание - высокая мощность уменьшает затухание сигнала, а для увеличения диапазона его действия можно использовать повторители. Уровень затухания достаточно низкий;
  •  электромагнитные помехи - устойчивость одночастотной трансляции к помехам и перехвату информации невысокая, как и в случае маломощной передачи. Поскольку сигнал распространяется на большое расстояние, вероятность его перехвата увеличивается.

Радиообмен в широком спектре (передача с разнесением сигнала по спектру) использует те же частоты, что и другие виды радиосетей, но вместо одной частоты здесь задействовано одновременно несколько частот. Для этого можно использовать две схемы модуляции: прямую последовательную модуляцию и модуляцию со скачкообразным изменением частоты.

Прямая частотная модуляция является наиболее распространенной схемой. Она предусматривает разбиение исходных данных на фрагменты, которые транслируются затем в отдельных частотах. Для предотвращения или затруднения перехвата информации передаются также ложные сигналы. Передатчик координирует свою работу с приемником, которому известны разрешенные частоты. Благодаря этому приемник может выделить фрагменты данных и выполнить их сборку,  игнорируя ложную информацию.

Сигнал можно перехватить, но трудно проследить правильную последовательность, собрать фрагменты данных и узнать, какие из них настоящие, чтобы получить верное сообщение. Таким образом, перехват информации крайне затрудняется. Существующие 900-мегагерцовые системы с прямой последовательной модуляцией поддерживают скорости передачи данных от 2 до 6 Мбит/с. Более высокие частоты позволяют увеличить эту скорость.

Модуляция со скачкообразным изменением частоты предусматривает быстрое переключение между несколькими заранее выделенными частотами. Передатчик и приемник должны быть очень хорошо синхронизированы, чтобы такая схема работала. За счет одновременной передачи на нескольких частотах можно расширить полосу пропускания.

Трансиверы, передающие сигнал с разнесением по спектру, имеют следующие характеристики:

  •  диапазон частот - сети с разнесением сигнала по спектру обычно работают на не лицензируемых частотах. В США распространены устройства, использующие диапазон от 902 до 928 МГц, но становятся доступными и устройства, функционирующие на частоте 2.4 ГГц;
  •  стоимость - хотя стоимость зависит от вида применяемого оборудования, по сравнению с другими беспроводными решениями радиосети с разнесением сигнала по спектру обычно недороги;
  •  инсталляция - зависит от типа оборудования;
  •  число узлов - данный тип сетей обычно реализуется как один домен, число узлов ограничивается полосой частот и непроизводительными потерями при коммуникациях;
  •  затухание - поскольку системы, передающие сигнал с разнесением по спектру, работают с малой мощностью, они дают слабый сигнал, подверженный затуханию;
  •  электромагнитные помехи - устойчивость к помехам низкая, но благодаря использованию разных частот для полного искажения сигнала помеха должна быть многочастотной. Подверженность перехвату информации низкая.

Спутниковые микроволновые системы передают сигнал между направленными параболическими антеннами. Они используют гигагерцовый диапазон частот и действуют в пределах прямой видимости. Основное отличие спутниковых систем в том, что одна антенна находится на спутнике, висящем над Землей на геостационарной орбите на высоте около 50 тыс. км. Таким образом, для спутниковых микроволновых систем достижимы самые отдаленные места и мобильные устройства.

Работают эти системы следующим образом: ЛС посылает по кабелю сигнал на антенну, которая передает его на орбитальный спутник. Спутник с помощью своей антенны транслирует сигнал в другой пункт на земле или, если этот пункт находится на противоположной стороне земного шара, на другой спутник.

Поскольку сигнал транслируется на расстояние в 50000 км на спутник и снова на Землю, спутниковые коммуникации покрывают расстояние между континентами так же легко, как дистанцию в несколько километров, однако при этом возникают задержки между передачей и приемом сигнала. Они называются задержками распространения и составляют от 0.5 до 5 секунд.

Спутниковые микроволновые системы имеют следующие характеристики:

  •  диапазон частот - спутниковые системы микроволновых коммуникаций работают в нижнем гигагерцовом диапазоне, обычно от 11 до 14 ГГц;
  •  стоимость таких систем и запуск спутника обходятся чрезвычайно дорого — в сотни миллионов долларов и больше. Некоторые компании, включая АТ&Т, Hughes Network System и Scientific-Atlanta, предлагают в аренду такие системы, что делает приемлемым использование их большим числом организаций. Между тем, хотя спутниковые коммуникации недешевы, прокладка кабеля на такие расстояния стоит еще дороже;
  •  инсталляция - спутниковых микроволновых систем представляет собой сложную техническую задачу. Лучше предоставить ее профессионалам — специалистам в данной области;
  •  пропускная способность - обычно скорость передачи данных составляет от 1 до 10 Мбит/с;
  •  затухание - зависит от частоты, размера антенны, мощности сигнала и атмосферных условий. Плохие атмосферные условия (дождь и туман) отрицательно влияют на микроволны высокой частоты;
  •  электромагнитные помехи - микроволновые сигналы подвержены действию ЕМI, преднамеренных помех и перехвату информации. Кроме того, на них влияют атмосферные условия.

       В инфракрасных средах передачи данных для пересылки сигнала применяется свет. Сигнал испускается светодиодом (LED) или лазером (ILD), а принимается фотодиодами. В инфракрасных системах используется терагерцовый диапазон электромагнитного спектра.

Инфракрасная связь предусматривает наличие передатчика и приемника. При подключению к ПК внешнего устройства необходим специальный приемник инфракрасных лучей (трансивер, адаптер), находящийся в прямой зоне видимости с устройством. Он подключается к инфракрасному порту компьютера, который должен быть предусмотрен на материской плате.  

Благодаря высокой частоте (терагерцы) инфракрасная связь обеспечивает высокую пропускную способность. В то же время инфракрасным сигналам присущ крупный недостаток: они не могут проникать через стены и другие объекты, а приему мешают сильные источники света.

В инфракрасной среде передачи данных применяется свет очень узкого диапазона. Инфракрасные лучи распространяются в зоне прямой видимости или излучаются не направленно, отражаясь от стен и потолков. Передача "точка-точка" позволяет повысить скорость передачи информации, но устройства должны оставаться на своих местах. Кроме того, уменьшается затухание сигнала и затрудняется его перехват. Типичное компьютерное оборудование для такой передачи аналогично пультам дистанционного управления бытовой электроникой. Необходимо только точно сориентировать приемник и передатчик

На рисунке А-9 изображена сеть с инфракрасной передачей «точка-точка».

Инфракрасные системы с передачей "точка-точка" обладают следующими характеристиками:

  •  диапазон частот - в инфракрасных коммуникациях используется нижний диапазон световых частот - от 100 ГГц до 1000 терагерц (ТГц);
  •  стоимость - стоимость зависит от вида используемого оборудования. Системы, действующие на большом расстоянии, где обычно применяются мощные лазеры, могут быть очень дорогими;
  •  инсталляция - инфракрасные системы коммуникаций "точка-точка" требуют точной установки. Если применяются мощные лазеры, необходимы дополнительные меры предосторожности, поскольку подобные устройства могут привести к ожогам глаз;
  •  пропускная способность - скорость передачи данных составляет от 100 Кбит/с до 16 Мбит/с (на расстоянии в километр);
  •  затухание зависит от качества и "чистоты" испускаемого света, а также от общих атмосферных условий и препятствий на пути сигнала;
  •  электромагнитные помехи - на инфракрасную передачу влияет интенсивный свет. Хорошо сфокусированные лучи препятствуют перехвату информации, поскольку прерывание сигнала сразу становится очевидным. Кроме того, зона возможного перехвата крайне ограничена.

Системы инфракрасной связи с широковещательной передачей позволяют принимать один сигнал нескольким ресиверам. Одним из важных преимуществ подобного решения является мобильность. Рабочие станции или другие устройства гораздо легче перемещать с места на место, чем при коммуникациях

На рисунке А- 10 изображена инфракрасная связь с широковещательной передачей.

Поскольку широковещательные инфракрасные сигналы не сфокусированы, как при передаче "точка-точка", такой тип систем дает более низкую пропускную способность. Обычно она составляет менее 1 Мбит/с, что слишком мало для большинства сетевых приложений. Системы инфракрасной связи с широковещательной передачей обладают следующими характеристиками:

  •  диапазон частот - в инфракрасных коммуникациях используется нижний диапазон световых частот - от 100 ГГц до 1000 ТГц;
  •  стоимость - стоимость зависит от требуемого качества света. Стандартное оборудование, применяемое в системах инфракрасной связи, достаточно недорогое. Мощная лазерная аппаратура значительно дороже;
  •  инсталляция - монтирование систем инфракрасных коммуникаций не представляет особых сложностей. Если устройства имеют хороший доступ и получают сильный сигнал, их можно расположить в любом месте в пределах досягаемости;
  •  число узлов – из-за низких скоростей в сети подобного типа можно объединить лишь незначительное число компьютеров. Между тем в приложениях, где передаются незначительные объемы данных, можно связать друг с другом любое число устройств. Таким образом, число узлов в сетях подобного типа сильно зависит от конкретного применения;
  •  затухание - широковещательная инфракрасная передача, как и передача "точка-точка", зависит от качества и "чистоты" испускаемого света, а также от общих атмосферных условий. Поскольку устройства можно легко переместить, препятствия обычно не представляют проблемы;
  •  электромагнитные помехи - на инфракрасную передачу влияет интенсивный свет. Поскольку широковещательная передача охватывает большую зону, перехватить сигнал здесь гораздо проще.


2 Стандарты линий связи

2.1 Стандарты кабелей на основе экранированной и неэкранированной «витой пары»

Медный неэкранированный кабель UТР в зависимости от электрических и механических характеристик разделяется на 5 категорий (Сategory 1 — Саtegorу 5). Кабели категорий 1 и 2 были определены в стандарте ЕIА/ТIА-568, но в стандарт 568А уже не вошли, как устаревшие.

Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных. До 1983 года это был основной тип  кабеля для телефонной разводки.

Кабели категории 2 были впервые применены фирмой IВМ при построении собственной кабельной системы. Главное требование к кабелям этой категории —  способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий IА-568), на основе которого затем был создан действующий стандарт ЕIА-568А. Стандарт ЕIА-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоскоростные сетевые приложения. Кабель категории 3 используется как для передачи данных, так и для передачи голоса. Шаг скрутки проводов равен примерно 3 витка на 30,5 см. Кабели категории 3 сейчас составляют основу многих кабельных систем зданий, в которых они используются для передачи и голоса, и данных.

Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на использование витой пары 5 категории. На этом кабеле работают протоколы со скоростью передачи данных 100 Мбит/с — FDDI, Fast Ethernet, 100VС-АnуLAN, а также более скоростные протоколы — АТМ на скорости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с. Наиболее важные электрoмaгнитные характеристики кабеля категории 5 имеют следующие значения:

  •  полнoе волнoвое сопрoтивление в диапазоне частот до 100 МГц равнo 100 Ом;
  •  величина перекрестных наводок NЕХТ в зависимости oт частoты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;
  •  затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (на частоте 100 МГц);
  •  активное сопротивление не должно превышать 9,4 Ом на 100 м;
  •  емкость кабеля не дoлжна превышать 5,6 нф на 100 м.

Кабели UТР независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля обладает определенным цветом и шагом скрутки. Обычно две пары предназначаются для передачи данных, а две другие — для передачи голоса.

Особое место занимают кабели категорий 6 и 7, которые промышленность начала выпускать сравнительно недавно. Для кабеля категории 6 характеристики определяются до частоты 200 МГц, а для кабелей категории 7 — до 600 МГц. Кабели категории 7 обязательно экранируются, причем как каждая пара, так и весь кабель в целом. Кабель категории 6 может быть как экранированным, так и неэкранированным. Основное назначение этих кабелей — поддержка высокоскоростных протоколов на отрезках кабеля большей длины, чем кабель UТР категории 5. Некоторые специалисты сомневаются в необходимости применения кабелей категории 7, так как стоимость кабельной системы при их использовании получается соизмеримой по стоимости сети с использованием волоконно-оптических кабелей, а характеристики кабелей на основе оптических волокон выше.

Экранированная витая пара SТР неплохо защищает передаваемые сигналы от внешних помех, а также меньше излучает электромагнитных колебаний вовне, что защищает, в свою очередь, пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана увеличивает стоимость кабеля и усложняет его прокладку, так как требует выполнения качественного заземления. Экранированный кабель используется только для передачи данных,  голос по нему не передают.

Основным стандартом, определяющим параметры экранированной витой пары, является фирменный стандарт IВМ. В этом стандарте кабели делятся не на категории, а на типы: Туре 1, Туре 2,..., Туре 9.

Основным типом экранированного кабеля является кабель Туре 1 стандарта IВМ. Он состоит из 2-х пар скрученных проводов, экранированных проводящей оплеткой, которая заземляется. Электрические параметры кабеля Туре 1 примерно соответствуют параметрам кабеля UТР категории 5. Однако волновое сопротивление кабеля Туре 1 равно 150 Ом (UТР категории 5 имеет волновое сопротивление 100 Ом), поэтому простое «улучшение» кабельной проводки сети путем замены неэкранированной пары UТР на SТР Туре 1 невозможно. Трансиверы, рассчитанные на работу с кабелем, имеющим волновое сопротивление 100 Ом, будут плохо работать на волновое сопротивление 150 Ом. Поэтому при использовании SТР Туре 1 необходимы соответствующие трансиверы. Такие трансиверы имеются в сетевых адаптерах Token Ring, так как эти сети разрабатывались для работы на экранированной витой паре. Некоторые другие стандарты также поддерживают кабель SТР Туре 1 — например, 100VG-AnyLAN, а также Fast Ethernet (хотя основным типом кабеля для Fast Ethernet  является UТР категории 5). В случае если технология может использовать UТР и SТР, нужно убедиться, на какой тип кабеля рассчитаны приобретаемые трансиверы. Сегодня кабель SТР Туре 1 включен в стандарты EIA\TIA-568A, ISO 11801 и ЕN50173, то есть приобрел международный статус.

Экранированные витые пары используются также в кабеле IВМ Туре 2, который представляет кабель Туре 1 с добавленными 2 парами неэкранированного провода для передачи голоса. Для присоединения экранированных кабелей к оборудованию используются разъемы конструкции IВМ.

2.2  Стандарты волоконно-оптических кабелей

Как уже говорилось во второй главе, волоконно-оптические кабели состоят из центрального проводника света (сердцевины) — стеклянного волокна, окруженного другим слоем стекла — оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают: многомодовое волокно со ступенчатым изменением показателя преломления; многомодовое волокно с плавным изменением показателя преломления; одномодовое волокно.

Понятие «мода» описывает режим распространения световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле (SМF) используется центральный проводник очень малого диаметра, соизмеримого с длиной волны света — от 5 до 10 мкм. При этом практически все лучи света 5распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Полоса пропускания одномодового кабеля очень широкая — до сотен гигагерц на километр. Изготовление тонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии.

В многомодовых кабелях (ММF) используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм — это диаметр центрального проводника, а 125 мкм — диаметр внешнего проводника.

В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения луча называется модой луча. Многомодовые кабели имеют более узкую полосу пропускания — от 500 до 800 МГц/км. Сужение полосы происходит из-за потерь световой энергии при отражениях, а также из-за интерференции лучей разных мод. В качестве источников излучения света в волоконно-оптических кабелях применяются светодиоды и полупроводниковые лазеры.

Для одномодовых кабелей применяются только полупроводниковые лазеры, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно. Для многомодовых кабелей используются более дешевые светодиодные излучатели.

Лазерные излучатели работают на длинах волн 1300 и 1550 нм. Быстродействие современных лазеров позволяет модулировать световой поток с частотами 10 ГГц и выше. Лазерные излучатели создают когерентный поток света, за счет чего потери в оптических волокнах становятся меньше, чем при использовании некогерентного потока светодиодов.

Использование только нескольких длин волн для передачи информации в оптических волокнах связанно с особенностью их амплитудно-частотной характеристики. Именно для этих дискретных длин волн наблюдаются ярко выраженные максимумы передачи мощности сигнала, а для других волн затухание в волокнах существенно выше.

Волоконно-оптические кабели обладают отличными характеристиками всех типов: электромагнитными, механическими (хорошо гнутся, а в соответствующей изоляции обладают хорошей механической прочностью). Однако у них есть один серьезный недостаток — сложность соединения волокон с разъемами и между собой при необходимости наращивания длины кабеля. Волоконно-оптические кабели присоединяют к оборудованию разъемами МIС, SТ и SС.

Сама стоимость волоконно-оптических кабелей ненамного превышает стоимость кабелей на витой паре, однако проведение монтажных работ с оптоволокном обходится намного дороже из-за трудоемкости операций и высокой стоимости применяемого монтажного оборудования. Так, присоединение оптического волокна к разъему требует проведения высокоточной обрезки волокна в плоскости строго перпендикулярной оси волокна, а также выполнения соединения путем сложной операции склеивания, а не обжатия, как это делается для витой пары. Выполнение же некачественных соединений сразу резко сужает полосу пропускания волоконно-оптических кабелей и линий.

В компьютерных сетях применяются кабели, удовлетворяющие определенным стандартам, что позволяет строить кабельную систему сети из кабелей и соединительных устройств разных производителей. Сегодня наиболее употребительными стандартами в мировой практике являются следующие:

  1.  американский стандарт EIA\TIA-568A, который был разработан совместными усилиями нескольких организаций: ANSI, EIA\TIA и лабораторией Underwriters Labs (UL). Стандарт EIA\TIA-568  разработан на основе предыдущей версии стандарта EIA\TIA-568 и дополнений к этому стандарту TSB-36 и TSB-40A;
  2.  международный стандарт ISO\IES 11801;
  3.  европейский стандарт EN50173.

Эти стандарты близки между собой и по многим позициям предъявляют к кабелям идентичные требования. Однако есть и различия между этими стандартами, например, в международный стандарт 11801 и европейский ЕN50173 вошли некоторые типы кабелей, которые отсутствуют в стандарте ЕIА/ТAI-568А.

До появления стандарта ЕIА/ТIА большую роль играл американский стандарт системы категорий кабелей Underwriters Labs , разработанный совместно с компанией Аnixter. Позже этот стандарт вошел в стандарт ЕIА/ТIА-568.

При стандартизации кабелей принят протокольно-независимый подход. Это означает, что в стандарте оговариваются электрические, оптические и механические характеристики, которым должен удовлетворять тот или иной тип кабеля или соединительного изделия — разъема, кроссовой коробки и т. п. Однако для какого протокола предназначен данный кабель, стандарт не оговаривает. Поэтому нельзя приобрести кабель для протокола Ethernet или FDDI, нужно просто знать, какие типы стандартных кабелей поддерживают протоколы Еthernet и FDDI.

В стандартах кабелей оговаривается достаточно много характеристик, из которых наиболее важными являются:

  •  затухание - измеряется в децибелах на метр для определенной частоты или диапазона частот сигнала;
  •  перекрестные наводки на ближнем конце - измеряются в децибелах для определенной частоты сигнала;
  •  импеданс (волновое сопротивление)это полное (активное и реактивное) сопротивление в электрической цепи. Импеданс измеряется в Омах и является относительно постоянной величиной для кабельных систем (например, для коаксиальных кабелей, используемых в стандартах Еthernet., импеданс кабеля должен составлять 50 Ом). Для неэкранированной витой пары наиболее часто используемые значения импеданса — 100 и 120 Ом. В области высоких частот (100-200 МГц) импеданс зависит от частоты;
  •  активное сопротивлениеэто сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля;
  •  емкость это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше. Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.
  •  электрический шум — это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц — компьютеры, принтеры, ксероксы; в диапазоне от 20 МГц до 1 ГГц — телевизионные и радиопередатчики, микроволновые печи. Основными источниками импульсного электрического шума являются моторы, переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах;
  •  диаметр или площадь сечения проводника - для медных проводников достаточно употребительной является американская система АWG (American Wire Gauge), которая вводит некоторые условные типы проводников, например 22 AWG, 24 AWG, 26 АWG. Чем больше номер типа проводника, тем меньше его диаметр. В вычислительных сетях наиболее употребительными являются типы проводников, приведенные выше в качестве примеров.

Приведенный перечень характеристик далеко не полон. Помимо универсальных характеристик, таких, например, как затухание, которые применимы для всех типов кабелей, существуют характеристики, которые применимы только к определенному типу кабеля. Например, параметр шаг скрутки проводов используется только для характеристика витой пары, а параметр NЕХТ применим только к многопарным кабелям на основе витой пары.

Основное внимание в современных стандартах уделяется кабелям на основе витой пары и волоконно-оптическим кабелям.

2.3  Стандарты коаксиальных кабелей

Существует большое количество типов коаксиальных кабелей, используемых в сетях различного типа — телефонных, телевизионных и компьютерных. Ниже приводятся основные типы и характеристики этих кабелей.

  •  RG-8 и RG-11 — «толстый» коаксиальный кабель, разработанный для сетей Еthernet 10Ваsе-5. Имеет волновое сопротивление 50 Ом и внешний диаметр около 12 мм. Этот кабель имеет достаточно толстый внутренний проводник диаметром 2,17мм, который обеспечивает хорошие механические и электрические характеристики. Зато этот кабель сложно монтировать — он плохо гнется;
  •  RG-58/U, RG-58 А/U и RG-58 С/U — разновидности «тонкого» коаксиального кабеля для сетей Еthernet 10Ваsе-2. Кабель RG-58/U имеет сплошной внутренний проводник, а кабель RG-58 А/U — многожильный. Кабель RG-58 С/U проходит «военную приемку». Все эти разновидности кабеля имеют волновое сопротивление 50 Ом, но обладают худшими механическими и электрическими характеристиками по сравнению с «толстым» коаксиальным кабелем. Тонкий внутренний проводник 0,89 мм не так прочен, зато обладает гораздо большей гибкостью, удобной при монтаже. Затухание в этом типе кабеля выше, чем в «толстом» коаксиальном кабеле, что приводит к необходимости уменьшать длину кабеля для получения одинакового затухания в сегменте;
  •  RG-59 — телевизионный кабель с волновым сопротивлением 75 Ом. Широко применяется в кабельном телевидении;
  •  RG-62 — кабель с волновым сопротивлением 93 Ома, использовался в сетях АгсNet, оборудование которых сегодня практически не выпускается.

 Коаксиальные кабели с волновым сопротивлением 50 Ом (то есть «тонкий» и «толстый») описаны в стандарте ЕIА/ТIА-568. Новый стандарт ЕIА/ТIА-568А коаксиальные кабели не описывает, как морально устаревшие.


Заключение

На сегодняшний день в компьютерных сетях используются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей.

Темпы рoста волoконной oптики и оптoэлектроники на мировом рынке oпережают все другие oтрасли техники и сoставляют 40 % в год. В ряде стран (Англия, Япония, Франция, Италия и др.) уже сейчас при строительстве сооружений связи используются в основном оптические кабели. О масштабах развития волоконно-оптических систем передачи (ВОСП) свидетельствуют объемы производства оптических волокон в США. За последнее время ими изготовлено около 10 млн. км волокна. Такое количество позволило бы сделать 250 витков вокруг всего земного шара.  

Применяя  волоконно-оптическую  связь, резко  увеличивается  объем  передаваемой  информации  по  сравнению  с  такими  широко распространенными  средствами, как  спутниковая  связь  и  радиорелейные  линии, это  объясняется  тем, что  волоконно-оптические системы  передачи  имеют  более  широкую  полосу  пропускания.

Так же популярной средой является витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простого монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Радиосвязь, также как и спутниковые каналы  используются чаще всего в тех случаях, когда кабельные связи применять нет ни  какой возможности - к примеру, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.


Глоссарий

№ п/п

Понятие

Определение

1

Витая пара

вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой.

2

Волоконно-оптическая связь

вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели

3

Коаксиальный кабель

электрический кабель, состоящий из расположенных соосно центрального проводника и экрана и служащий для передачи высокочастотных сигналов.

4

Кабель

один или несколько изолированных друг от друга проводников (жил), заключённых в оболочку.

5

Активное сопротивление

сопротивление электрической цепи или её участка, обусловленное необратимыми превращениями электрической энергии в другие виды энергии (в тепловую энергию).

6

Реактивное сопротивление

это сопротивление проводников переменного тока с учётом поверхностного эффекта.

7

Коммутационная панель

одна из составных частей структурированной кабельной системы (СКС). Представляет из себя панель со множеством соединительных разъёмов, расположенных на лицевой стороне панели

8

Оптическое волокно

нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.

9

Коммутатор

многоуровневый и многопроцессорный мост, обрабатывающий кадры со скоростью до нескольких миллионов кадров в секунду

10

Электромагнитная помеха

нежелательное физическое явление или воздействие электрических, магнитных или электромагнитных полей, электрических токов или напряжений внешнего или внутреннего источника, которое нарушает нормальную работу технических средств, или вызывает ухудшение технических характеристик и параметров этих средств.


Список использованных источников

1

Бойко В. Сети и телекоммуникации [Текст]/ В. Бойко – СПб.: Питер, 2003. – 500 стр. – ISBN: 5-94223-434-6.

2

Виснадул Б.Д. Линии связи [Текст]/ Б.Д. Виснадул. – М.: ИД «Форум» – Инфра-М. 2007. – 2500 стр. –  ISBN: 5-7149-0294-7.

3

Вишневский В. Н. Теоретические основы проектирования компьютерных сетей [Текст]/ В. М. Вишневский. – М.: Техносфера, 2002. – 125 стр. – ISBN: 5-94836-011-3

4

Вильгельм К.О. Характеристики  линий связи [Текст]/ К.О. Вильгельм, – М.: Техносфера, 2005. – 420 стр. –  ISBN: 5-94836-049-0

5

Гейер Д. Сети. Первый шаг [Текст]/ Д. Гейер. – М.: Издательский дом «Вильямс», 2005. – 192 с. –  ISBN: 5-8459-0852-3

6

Григорьев В.А. Сети и системы радиодоступа [Текст]/ В.А. Григорьев, О.И. Лагутенко, Ю.А. Распаев. – М.: Экотрендз, 2005. – 384 стр. – ISBN: 5-88405-060-7

7

Новиков М. Компьютерная сеть. [Текст]/ М. Новиков, Х. Вер. – М.: Вильямс, 2001. – 300 стр. – ISBN: 5-94704-011-0

8

Пескова С. А., Сети и телекоммуникации [Текст]/ С. А. Пескова, А. В. Кузин, А. Н. Волков. – М.: Издательский центр «Академия», 2007. – 352 стр.  – ISBN: 978-5-7695-4149-0

10

Пятибратов А.П. Вычислительные системы, сети и телекоммуникации. Учебник [Текст]/ А. П. Пятибратов, Л.П. Гудыно, А.А. Кириченко. – М.: Финансы и статистика, 2005. – 560 c. – ISBN: 5-279-02779-0

11

Тихонов Н. Компьютерные сети. 4-е изд. [Текст]/ Н. Тихонов. –  СПб.: Питер, 2002. – 800 стр. – ISBN: 978-5-318-00492-5

1  Бойко В. Сети и телекоммуникации.  СПб., 2003.– С. 420.

2  Виснадул Б.Д. Линии связи.  – М., 2005.– С. 502.

3 Вишневский В. Н. Теоретические основы проектирования компьютерных сетей. –М., 2002.– С. 100.

4 Григорьев В.А. Сети и системы радиодоступа –М., 2003.– С. 100.

5 Пескова С. А., Сети и телекоммуникации –М., 2007.– С. 99.