3828

Колебательные движения физического маятника

Контрольная

Физика

Физический маятник 1.Параметры колебательного движения Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция сов...

Русский

2014-09-23

110.6 KB

11 чел.

Физический маятник

1.Параметры колебательного движения

Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция совершает гармонические колебания.

Смещение из положения равновесияотклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитуда колебаний А – наибольшее отклонение колеблющейся величины от ее среднего значения.

ω t + α – фаза колебаний

α - начальная фаза колебаний

Мгновенная скорость частицы – векторная физическая величина, равная отношению перемещения Δ, совершенного частицей за очень малый промежуток времени Δt, к этому промежутку времени.

υ = dx / dt = - Aωsin (ωt + α) = Aωcos (ωt + α + π/2)

υmax = Aω – амплитуда скорости

Средняя скорость частицы векторная физическая величина, равная отношению перемещения, совершенного частицей за время t, к этому времени.

Ускорение материальной частицы – векторная физическая величина, равная пределу к которому стремится отношение изменения скорости, произошедшего за малый промежуток времени к этому промежутку времени.

a = / dt = - Aω2cos (ωt + α) = Aω2sin (ωt + α + π)

amax = Aω2 – амплитуда ускорения

Период колебаний Т – время, за которое совершается одно полное колебание.

Частота колебаний ν - физическая величина, показывающая число колебаний, совершаемых за 1 с.

Циклическая (или круговая) частота ω – это число колебаний, совершаемых за 2π секунд.

ω = 2 ∙ π / Т = 2 ∙ π ∙ ν

Уравнение гармонических колебаний для колебаний груза на пружине.

Гармонические колебания совершает тело массы m, на которое действует только квазиупругая сила F = - kx,

где х – отклонение колеблющегося тела от положения равновесия, k – коэффициент упругости.

Уравнение движения:

ma = - kx

     ∙∙

a = d2 x / d t2 = x

     ∙∙

m ∙ x + k ∙ x = 0

∙∙

x + k / mx = 0

k / m = ω2

∙∙

x + ω2  x = 0 – дифференциальное уравнение свободных незатухающих гармонических колебаний.

x = Acos (ωt + α) – решение уравнения.

Закон изменения кинетической, потенциальной и полной энергии частицы.

Полная энергия гармонического колебания должна оставаться постоянной.

В процессе колебаний происходит превращение кинетической энергии в потенциальную и обратно.

В моменты наибольшего отклонения от положения равновесия полная энергия Е состоит только из потенциальной энергии, которая достигает своего наибольшего значения.

При прохождении системы через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в эти моменты достигает своего наибольшего значения.

Кинетическая энергия Ек = mυ2 / 2 = mA2 ∙ ω2 / 2 ∙ sin2 (ω ∙ t + α)

Потенциальная энергия Еп = kx2 / 2 = kA2 / 2 ∙ cos2 (ω ∙ t + α) = mA2 ∙ ω2 / 2 ∙ cos2 (ω ∙ t + α)

Полная энергия Е = Ек + Еп = mA2 ∙ ω2 / 2 = kA2 / 2

Eк = Е ∙ sin2 (ω ∙ t + α) = Е / 2 ( 1 – cos 2(ωt + α))

Eп = Е ∙ cos2 (ω ∙ t + α) = Е / 2 ( 1 + cos 2(ωt + α))

2.Уравнение колебаний математического и физического маятника.

Под маятником в физике понимают твёрдое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают математический  и физический маятник.

Математическим маятником называют систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mgl sin φ = - mglφ (в случае малых колебаний),

где m – масса маятника, l – длина маятника, φ – угол, образованный нитью с вертикалью, - характеризует отклонение маятника от положения равновесия.

Основное уравнение вращательного движения М = I ∙ ε

            ∙∙

Угловое ускорение  ε = d2φ / d t2 = φ

Момент инерции I = ml2

Уравнение движения примет вид:

∙∙

ml2 ∙ φ = - mglφ

Частота колебаний ω2 = g / l

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ l / g

Если колеблющееся тело нельзя представить как материальную точку, маятник называется физическим.

C – центр масс,  lс – расстояние от точки подвеса до центра масс.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mglс sin φ = - mglφ (в случае малых колебаний),

Основное уравнение вращательного движения

    ∙∙

М = I ∙ ε = Iφ

Уравнение движения примет вид:

   ∙∙

I ∙ φ + mglcφ = 0

∙∙

φ + mglc / Iφ = 0

Частота колебаний ω2 = mg  lc / I

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ I / mglc

Период, частота колебаний и приведённая длина физического маятника.

Частота колебаний ω = √ mglc / I

Период колебаний Т = 2 ∙ π √ I / mglc = 2 ∙ π √ Lпр / g

Приведённая длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.

Lпр = I / m ∙ lc

Lпр > lc


 

А также другие работы, которые могут Вас заинтересовать

60631. СЕМЬЯ – ОСНОВА ОБЩЕСТВА. ВОЗРОЖДЕНИЕ ДУХОВНО-НРАВСТВЕННЫХ СЕМЕЙНЫХ ЦЕННОСТЕЙ 50.5 KB
  Немаловажным является и вопрос здоровья брачующихся комментарий медицинского работника Т в. Роман Комментарий юриста: говорит о том что гражданский брак в современном названии это просто сожительство...
60632. Властивості пірамід 32 KB
  Про це говорять і дивовижні результати вимірювання піраміди Хеопса. Крім того зясувалося що єгипетські майстри зробили піраміди відображенням розташування зірок у сузірї Оріона а вершина Великої піраміди дивиться точно на Полярну зірку.
60633. Кто родителей почитает, тот навек не погибает 50.5 KB
  Как подумаешь порою что и Дуня может быть тут же пропадает так поневоле согрешишь да пожелаешь ей могилы Кто виноват в том что отношения отца и дочери сложились так трагично В погоне за богатством и счастьем она забыла о долге перед отцом; её поведение эгоистично.
60634. Вирішення завдань з економічним вмістом на уроках інформатики 105 KB
  Громадянин відкрив рахунок в банці вклавши 1000 грн. Громадянин відкрив рахунок в банці вклавши 3000 грн. 5 років якщо після кожного року зберігання громадянин знімав з рахунку 300 грн.
60636. Урок світової літератури на тему : «Подорожі Скруджа Різдвяної ночі» 3.5 MB
  Мета: навчати вмінню аналізувати зміст художнього твору; розвивати логічне мислення, зв’язне мовлення, удосконалювати навички виразного читання, виховувати людяність, доброту, милосердя, уміння співчувати.