3828

Колебательные движения физического маятника

Контрольная

Физика

Физический маятник 1.Параметры колебательного движения Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция сов...

Русский

2014-09-23

110.6 KB

11 чел.

Физический маятник

1.Параметры колебательного движения

Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция совершает гармонические колебания.

Смещение из положения равновесияотклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитуда колебаний А – наибольшее отклонение колеблющейся величины от ее среднего значения.

ω t + α – фаза колебаний

α - начальная фаза колебаний

Мгновенная скорость частицы – векторная физическая величина, равная отношению перемещения Δ, совершенного частицей за очень малый промежуток времени Δt, к этому промежутку времени.

υ = dx / dt = - Aωsin (ωt + α) = Aωcos (ωt + α + π/2)

υmax = Aω – амплитуда скорости

Средняя скорость частицы векторная физическая величина, равная отношению перемещения, совершенного частицей за время t, к этому времени.

Ускорение материальной частицы – векторная физическая величина, равная пределу к которому стремится отношение изменения скорости, произошедшего за малый промежуток времени к этому промежутку времени.

a = / dt = - Aω2cos (ωt + α) = Aω2sin (ωt + α + π)

amax = Aω2 – амплитуда ускорения

Период колебаний Т – время, за которое совершается одно полное колебание.

Частота колебаний ν - физическая величина, показывающая число колебаний, совершаемых за 1 с.

Циклическая (или круговая) частота ω – это число колебаний, совершаемых за 2π секунд.

ω = 2 ∙ π / Т = 2 ∙ π ∙ ν

Уравнение гармонических колебаний для колебаний груза на пружине.

Гармонические колебания совершает тело массы m, на которое действует только квазиупругая сила F = - kx,

где х – отклонение колеблющегося тела от положения равновесия, k – коэффициент упругости.

Уравнение движения:

ma = - kx

     ∙∙

a = d2 x / d t2 = x

     ∙∙

m ∙ x + k ∙ x = 0

∙∙

x + k / mx = 0

k / m = ω2

∙∙

x + ω2  x = 0 – дифференциальное уравнение свободных незатухающих гармонических колебаний.

x = Acos (ωt + α) – решение уравнения.

Закон изменения кинетической, потенциальной и полной энергии частицы.

Полная энергия гармонического колебания должна оставаться постоянной.

В процессе колебаний происходит превращение кинетической энергии в потенциальную и обратно.

В моменты наибольшего отклонения от положения равновесия полная энергия Е состоит только из потенциальной энергии, которая достигает своего наибольшего значения.

При прохождении системы через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в эти моменты достигает своего наибольшего значения.

Кинетическая энергия Ек = mυ2 / 2 = mA2 ∙ ω2 / 2 ∙ sin2 (ω ∙ t + α)

Потенциальная энергия Еп = kx2 / 2 = kA2 / 2 ∙ cos2 (ω ∙ t + α) = mA2 ∙ ω2 / 2 ∙ cos2 (ω ∙ t + α)

Полная энергия Е = Ек + Еп = mA2 ∙ ω2 / 2 = kA2 / 2

Eк = Е ∙ sin2 (ω ∙ t + α) = Е / 2 ( 1 – cos 2(ωt + α))

Eп = Е ∙ cos2 (ω ∙ t + α) = Е / 2 ( 1 + cos 2(ωt + α))

2.Уравнение колебаний математического и физического маятника.

Под маятником в физике понимают твёрдое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают математический  и физический маятник.

Математическим маятником называют систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mgl sin φ = - mglφ (в случае малых колебаний),

где m – масса маятника, l – длина маятника, φ – угол, образованный нитью с вертикалью, - характеризует отклонение маятника от положения равновесия.

Основное уравнение вращательного движения М = I ∙ ε

            ∙∙

Угловое ускорение  ε = d2φ / d t2 = φ

Момент инерции I = ml2

Уравнение движения примет вид:

∙∙

ml2 ∙ φ = - mglφ

Частота колебаний ω2 = g / l

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ l / g

Если колеблющееся тело нельзя представить как материальную точку, маятник называется физическим.

C – центр масс,  lс – расстояние от точки подвеса до центра масс.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mglс sin φ = - mglφ (в случае малых колебаний),

Основное уравнение вращательного движения

    ∙∙

М = I ∙ ε = Iφ

Уравнение движения примет вид:

   ∙∙

I ∙ φ + mglcφ = 0

∙∙

φ + mglc / Iφ = 0

Частота колебаний ω2 = mg  lc / I

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ I / mglc

Период, частота колебаний и приведённая длина физического маятника.

Частота колебаний ω = √ mglc / I

Период колебаний Т = 2 ∙ π √ I / mglc = 2 ∙ π √ Lпр / g

Приведённая длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.

Lпр = I / m ∙ lc

Lпр > lc


 

А также другие работы, которые могут Вас заинтересовать

41494. Технология работы промежуточных станций 180 KB
  Опорные промежуточные станции их эффективность. Для четкой организации работы на промежуточных станциях составляются технологические карты операций которые включают: нормы времени на приготовление поездных маршрутов и станционные интервалы; графики работы со сборными поездами и нормы времени на операции со сборнораздаточными вагонами; нормы времени на маневровые передвижения в пределах станции с пути на путь с разным количеством вагонов и одного локомотива; нормы простоя вагонов под грузовыми операциями и графики обработки вагонов на...
41495. ТЕХНОЛОГИЯ РАБОТЫ СОРТИРОВОЧНОЙ ГОРКИ 215.5 KB
  Перерабатывающая способность горки и пути её повышения. Технология совмещения роспуска составов и формирования поездов с горки. Сортировочная горка состоит из трех основных элементов: надвижной части вершины горки и спускной части.
41496. ТЕХНОЛОГИЯ РАБОТЫ СОРТИРОВОЧНЫХ СТАНЦИЙ. ХАРАКТЕРИСТИКА СОРТИРОВОЧНЫХ СТАНЦИЙ 123.5 KB
  Оперативное управление работой станции 1. Назначение размещение и техническая оснащенность Сортировочные станции предназначаются для массовой переработки вагонов расформирования и формирования поездов причем в первую очередь сквозных т. Кроме того сортировочные станции могут пропускать транзитные поезда с которыми выполняются следующие операции: смена локомотивных бригад; смена локомотивов; технический и коммерческий осмотр составов; ремонт и экипировка локомотивов вагонов; снабжение водой поездов с живностью экипировка...
41497. ТЕХНОЛОГИЯ РАБОТЫ УЧАСТКОВОЙ СТАНЦИИ 248.5 KB
  Основная работа участковых станций заключается в обработке транзитных поездов кроме того на этих станциях выполняются еще следующие основные операции: смена локомотивов и локомотивных бригад; расформированиеформирование составов участковых и сборных поездов иногда сквозных; маневры по отцепке и прицепке групп вагонов к транзитным поездам с частичной переработкой грузовые и пассажирские операции. Число сортировочных путей определяется числом назначений сортировки суточным количеством перерабатываемых вагонов технологическим процессом...
41498. ОПЕРАТИВНОЕ ПЛАНИРОВАНИЕ, УПРАВЛЕНИЕ И РУКОВОДСТВО РАБОТОЙ СТАНЦИИ 232 KB
  Оперативное планирование работы станции. Автоматизация текущего планирования работы станции АСТП. Оперативное руководство работой станции 1. План работы смены вступающий на дежурного во второй половине суток, оставляют с учетом итогов работы первой смены и обеспечения выполнения всего суточного плана.
41499. ОРГАНИЗАЦИЯ РАБОТЫ СТАНЦИЙ. ОБЩИЕ СВЕДЕНИЯ ОБ УСТРОЙСТВЕ И РАБОТЕ СТАНЦИЙ 162.5 KB
  К раздельным пунктам относятся: станции разъезды обгонные пункты путевые посты а при автоблокировке и проходные светофоры. Коммерческие операции: прием взвешивание хранение и выдача грузов; оформление перевозочных документов взимание провозных платежей; пломбирование вагонов; обеспечение сохранности грузов находящихся на станции; осмотр прибывающих и отправляющих составов в коммерческом отношении. В зависимости от основного назначения и характера работы станции делятся на промежуточные участковые сортировочные грузовые и...
41500. ОСНОВЫ УПРАВЛЕНИЯ ЭКСПЛУАТАЦИОННОЙ РАБОТОЙ ЖЕЛЕЗНЫХ ДОРОГ 123 KB
  Основные принципы организации движения. Железнодорожный транспорт занимает ведущее место среди всех видов транспорта автомобильный воздушный речной морской трубопроводный это определяется следующими положениями: 1 железнодорожный транспорт работает непрерывно в течении года и суток осуществляя массовую перевозку народнохозяйственных грузов пассажиров; 2железнодорожный транспорт участвует в различных фазах производственного процесса: в начальной если перевозят сырьё исходные материалы; в средней если перевозят комплектующее...
41502. РАБОТА СТАНЦИИ В ЗИМНИХ УСЛОВИЯХ 49.5 KB
  Ремонт оборудования сортировочных горок устройств СЦБ и связи и наружного освещения на горках капитальный ремонт замедлителей воздухопроводной сети компрессорного оборудования в устройствах СЦБ ремонт стрелочных переводов гарнитуры; в устройствах связи громкоговорящей связи в первую очередь пополнение количества динамиков; выправка профилей сортировочных горок вытяжек и сортировочных путей; эти работы являются очень ответственными трудоемкими и поэтому на практике не редко не производятся это приводит к замедлению темпа...