3828

Колебательные движения физического маятника

Контрольная

Физика

Физический маятник 1.Параметры колебательного движения Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция сов...

Русский

2014-09-23

110.6 KB

11 чел.

Физический маятник

1.Параметры колебательного движения

Движение, при котором координата точки изменяется по закону косинуса (или синуса) называется гармоническим колебанием. Таким образом, при равномерном движении точки по окружности ее проекция совершает гармонические колебания.

Смещение из положения равновесияотклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитуда колебаний А – наибольшее отклонение колеблющейся величины от ее среднего значения.

ω t + α – фаза колебаний

α - начальная фаза колебаний

Мгновенная скорость частицы – векторная физическая величина, равная отношению перемещения Δ, совершенного частицей за очень малый промежуток времени Δt, к этому промежутку времени.

υ = dx / dt = - Aωsin (ωt + α) = Aωcos (ωt + α + π/2)

υmax = Aω – амплитуда скорости

Средняя скорость частицы векторная физическая величина, равная отношению перемещения, совершенного частицей за время t, к этому времени.

Ускорение материальной частицы – векторная физическая величина, равная пределу к которому стремится отношение изменения скорости, произошедшего за малый промежуток времени к этому промежутку времени.

a = / dt = - Aω2cos (ωt + α) = Aω2sin (ωt + α + π)

amax = Aω2 – амплитуда ускорения

Период колебаний Т – время, за которое совершается одно полное колебание.

Частота колебаний ν - физическая величина, показывающая число колебаний, совершаемых за 1 с.

Циклическая (или круговая) частота ω – это число колебаний, совершаемых за 2π секунд.

ω = 2 ∙ π / Т = 2 ∙ π ∙ ν

Уравнение гармонических колебаний для колебаний груза на пружине.

Гармонические колебания совершает тело массы m, на которое действует только квазиупругая сила F = - kx,

где х – отклонение колеблющегося тела от положения равновесия, k – коэффициент упругости.

Уравнение движения:

ma = - kx

     ∙∙

a = d2 x / d t2 = x

     ∙∙

m ∙ x + k ∙ x = 0

∙∙

x + k / mx = 0

k / m = ω2

∙∙

x + ω2  x = 0 – дифференциальное уравнение свободных незатухающих гармонических колебаний.

x = Acos (ωt + α) – решение уравнения.

Закон изменения кинетической, потенциальной и полной энергии частицы.

Полная энергия гармонического колебания должна оставаться постоянной.

В процессе колебаний происходит превращение кинетической энергии в потенциальную и обратно.

В моменты наибольшего отклонения от положения равновесия полная энергия Е состоит только из потенциальной энергии, которая достигает своего наибольшего значения.

При прохождении системы через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в эти моменты достигает своего наибольшего значения.

Кинетическая энергия Ек = mυ2 / 2 = mA2 ∙ ω2 / 2 ∙ sin2 (ω ∙ t + α)

Потенциальная энергия Еп = kx2 / 2 = kA2 / 2 ∙ cos2 (ω ∙ t + α) = mA2 ∙ ω2 / 2 ∙ cos2 (ω ∙ t + α)

Полная энергия Е = Ек + Еп = mA2 ∙ ω2 / 2 = kA2 / 2

Eк = Е ∙ sin2 (ω ∙ t + α) = Е / 2 ( 1 – cos 2(ωt + α))

Eп = Е ∙ cos2 (ω ∙ t + α) = Е / 2 ( 1 + cos 2(ωt + α))

2.Уравнение колебаний математического и физического маятника.

Под маятником в физике понимают твёрдое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают математический  и физический маятник.

Математическим маятником называют систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mgl sin φ = - mglφ (в случае малых колебаний),

где m – масса маятника, l – длина маятника, φ – угол, образованный нитью с вертикалью, - характеризует отклонение маятника от положения равновесия.

Основное уравнение вращательного движения М = I ∙ ε

            ∙∙

Угловое ускорение  ε = d2φ / d t2 = φ

Момент инерции I = ml2

Уравнение движения примет вид:

∙∙

ml2 ∙ φ = - mglφ

Частота колебаний ω2 = g / l

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ l / g

Если колеблющееся тело нельзя представить как материальную точку, маятник называется физическим.

C – центр масс,  lс – расстояние от точки подвеса до центра масс.

При отклонении маятника от положения равновесия возникает вращательный момент М:

М = - mglс sin φ = - mglφ (в случае малых колебаний),

Основное уравнение вращательного движения

    ∙∙

М = I ∙ ε = Iφ

Уравнение движения примет вид:

   ∙∙

I ∙ φ + mglcφ = 0

∙∙

φ + mglc / Iφ = 0

Частота колебаний ω2 = mg  lc / I

∙∙

φ + ω2 ∙ φ = 0 – дифференциальное уравнение относительно функции φ (t).

Решение этого уравнения φ = φ0cos (ω ∙ t + α),

где α – начальная фаза колебаний, ω – циклическая частота колебаний.

Период колебаний Т = 2 ∙ π / ω = 2 ∙ π ∙ √ I / mglc

Период, частота колебаний и приведённая длина физического маятника.

Частота колебаний ω = √ mglc / I

Период колебаний Т = 2 ∙ π √ I / mglc = 2 ∙ π √ Lпр / g

Приведённая длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.

Lпр = I / m ∙ lc

Lпр > lc


 

А также другие работы, которые могут Вас заинтересовать

61747. Прикладное программное обеспечение и его место в структуре программного обеспечения компьютера. Технология обработки текстов. Основные приемы редактирования: работа с символом, со строкой и фрагментом 64.33 KB
  На экране отображается схема-классификация ПО Все программы которые есть в компьютере то есть ПО компьютера можно разделить на три группы: прикладное ПО; системное ПО; системы программирования.
61748. Компьютерная графика и ее изучение. Графический редактор как средство иллюстративной графики 18.28 KB
  Цель: Познакомиться с основными понятиями компьютерной графики и с ее применением. Для того чтобы лучше понять полученные результаты человек брал бумагу карандаши линейки и чертил графики диаграммы.
61751. Аппликация. Новогодняя открытка 15.6 KB
  Показ образца новогодней открытки: Что на ней изображено Из каких составных частей она состоит Какие цвета были использованы при изготовлении открытки Сегодня для работы нам понадобятся цветной картон цветная бумага ножницы простой карандаш клей.
61752. спользование документов письменного инструктирования на уроках производственного обучения по профессии Повар, кондитер 67.17 KB
  Исследования показали при длительности урока производственного обучения 6 часов на индивидуальную работу мастера с каждым из 25 учащихся приходится всего 810 мин.; втретьих невозможностью использовать на рабочих местах учащихся изданные в виде книг руководства для подготовки квалифицированных рабочих ряда профессий в том числе по профессии Повар-кондитер. Вместе с тем необходимо отметить что несмотря на явные достоинства письменное инструктирование к сожалению пока не нашло широкого применения в практике производственного...
61753. Животные. Корова 20.46 KB
  Давайте составим портрет героини нашего урока Дети получают конверты с осколочными картинками Игра Собери картинку Скажите а для чего человек выращивает коров Что получает человек с коровы мясо молоко и крепкую кожу.
61754. Произношение и правописание слов с сочетаниями жи, ши 22.15 KB
  Цели и задачи: а обучающая: уточнить представление учащихся о звуках ж ш как твёрдых и развивать умения писать сочетания жи ши; обогащать словарный запас: б способствовать развитию речи...
61755. Корень и однокоренные слова 17.57 KB
  Пальчиковая гимнастика 2 мин А теперь давайте подготовим наши пальчики к письму. 3 Словарная работа 7 мин Молодцы а теперь открываем тетради и записываем число. Записывают слова в тетрадях и на доске вспоминают написания слов.