3834

Исследование температурной зависимости электропроводности твердых тел

Лабораторная работа

Физика

Исследование температурной зависимости электропроводности твердых тел/ Цель работы: Установление опытным путем законов изменения электропроводности твердых тел при их нагревании и определение энергии активации полупроводника. Теоретические исслед...

Русский

2012-11-08

132 KB

11 чел.

Исследование температурной зависимости электропроводности твердых тел

1 Цель работы:

Установление опытным путем законов изменения электропроводности твердых тел при их нагревании и определение энергии активации полупроводника.

2 Теоретические исследования.

Работа сводится к измерению электропроводности образцов при разных температурах T и анализа полученных данных. Как известно, удельная электропроводность веществ определяется концентрацией носителей заряда n, их движимостью .

        ( 1)

Законы изменения  под действием нагревания, освещения, электрических и других полей зависят от их влияния на n и .

При возрастании температуры подвижность свободных носителей заряда уменьшается по степенному закону через рассеивание на тепловых колебаниях решетки. Концентрация свободных носителей не зависит от температуры в металлах и диэлектриках, а в полупроводниках изменяется по закону ,

где -концентрация, которая зависит от материала полупроводника;

 - энергия активации полупроводника;

-постоянная Больцмана;

-температура.

Для полупроводников с большой точностью

,где - удельная электропроводность полупроводника, когда .

Из формулы видно, что величина удельной электропроводности зависит от энергии активации полупроводника ,что разрешает определить эту важную величину по наклону прямой

на графике  от :

,          ( 2)

где  - отношение приращения функции к приращению аргумента.

3 Экспериментальные условия

Оборудование: Регулированный источник питания, вольтметр, амперметр, термостат с образцами, термометр.

Электропроводность образцов PK при их нагревании измеряется с помощью макета, схема которого приведена на рис. 1.

    PV           SA2

    V  

      ST   x  0 0 0   x2

        мA

      PVA

 RP

     VD      EK

Рис   1

Исследуемые образцы PK1, PK2, PK3 помещены к термостату с нагревательным элементом EK и термометром BK. Переключатель SA2 разрешает подключить их к измерительной схеме поочередно.

Изменение электропроводности образцов определяется побочным (косвенным) методом: путем измерения силы тока при постоянной величине напряжения на образце, или при изменении напряжения при постоянной величине тока.

Напряжение на образцах в первом случае (или сила тока в втором) поддерживается постоянным электронным стабилизатором ST.

Электронный стабилизатор и нагреватель EК включаются тумблером SA1, о чем сигнализирует светодиод VD. Измерительный прибор PVA подключается к схеме с помощью клемм X1 и X2.

При включенном нагревателе образцы подключаются к потенциометру RP, что разрешает измерять на них напряжение для получения вольтамперной характеристики.

 4 Порядок выполнения работы

 

1. Подключить к клеммам Х1 и Х2 амперметр (или вольтметр). Тумблер SA1 включить

2. Включить макет. Изменяя напряжение на образцах с помощью   потенциометра RP, и измеряя силу тока и напряжение снять вольтамперную характеристику образцов.

 3. На основе полученных характеристик построить графики I(U) и определить электропроводность образцов =I/U.

4. Тумблером SA1 включить нагреватель EK и электронный стабилизатор.

Снять зависимость электропроводности образцов от температуры. Изменение электропроводности образцов при их нагревании определить по показаниям прибора, подключенного к клеммам Х1 И Х2;

5. По полученным зависимостям построить графики  и с их помощью найти полупроводник.

6. Для полупроводника построить график зависимости ln(/K) от (1/Т). По графику определить приращение ln(/K) i (1/Т). Используя формулу  2 определить энергию активации полупроводника.

Вольтамперная характеристика первого образца в табличном и графическом виде отображена соответственно на графике (рис  2) и в таблице  1.

 

Таблица  1 – Вольтамперная характеристика первого образца

I, мА

0,1

0,2

0,3

0,4

0,5

U, В

0,09

0,2

0,31

0,42

0,53

Рисунок  2 – Вольтамперная характеристика первого образца

Отсюда

Вольтамперная характеристика второго образца в табличном и графическом виде отображена соответственно на графике (рис  3) и в таблице  1.

Таблица  2 – Вольтамперная характеристика второго образца

I, мА

0,1

0,2

0,3

0,4

0,5

U, В

0,07

0,16

0,25

0,33

0,42

Рисунок  3 – Вольтамперная характеристика второго образца

Таблица  3 – Вольтамперная характеристика третьего образца

I, мА

0,1

0,2

0,3

0,4

0,5

U, В

0,06

0,14

0,22

0,29

0,37

Рисунок  4 – Вольтамперная характеристика третьего образца

Таблица  4 – Зависимость напряжения от температуры при I=0.6 мA

t0

26

28

31

32

34

36

38

U1

0,56

0,54

0,5

0,47

0,44

0,43

0,43

1/

1,125

1,167

1,26

1,34

1,432

1,47

1,47

U2

0,45

0,43

0,4

0,38

0,37

0,37

0,37

2/

1,133

1,186

1,275

1,342

1,378

1,378

1,378

U3

0,46

0,46

0,47

0,475

0,475

0,475

0,48

3/

0,978

0,978

0,957

0,945

0,945

0,945

0,938

ln(3/)=0,0417; (1/T)=1.29

5 Вычисление погрешностей

ВЫВОД: проделав данную лабораторную работу, опытным путем были установлены законы изменения электропроводности твердых тел при их нагревании и определили энергию активации полупроводника. Построили графические изображения вольтамперных характеристик.


 

А также другие работы, которые могут Вас заинтересовать

86068. Маркетинг товаров новейшей технологии 482 KB
  Маркетинг является разноплановой концепцией. Прежде всего, он известен как философия бизнеса, направленная на выявление потребностей потребителей, целевых рынков, которые данная организация может удовлетворить наилучшим образом путем производства соответствующих продуктов, на то, чтобы каждый...
86070. Моделирование системы массового обслуживания 780.5 KB
  Большой класс систем которые сложно изучить аналитическими способами но которые хорошо изучаются методами статистического моделирования сводится к системам массового обслуживания СМО. Системы массового обслуживания СМО представляют собой системы специального вида реализующие многократное выполнение однотипных задач.
86071. ФАЙЛЫ В СРЕДЕ ПРОГРАММИРОВАНИЯ DELPHI (ЯЗЫК OBJECT PASCAL) 473 KB
  Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времени эти границы были весьма узкими. Так в популярной файловой системе FAT длина имен ограничивается известной схемой...
86072. Анализ производительности нераспределенной системы регистрации метеонаблюдений 519.5 KB
  Последовательность событий Включение выключение системы период = Тс: А1:Интерфейс Кнопок получает и обрабатывает прерывание. А2:Интерфейс Кнопок посылает Запрос Кнопки на обслуживание Диспетчеру. 3:Диспетчер передает запрос Интерфейсу Датчиков. 4:Диспетчер передает запрос Интерфейсу Центрального блока.
86075. ФУНКЦИАНАЛЬНОСТЬ СОВРЕМЕННЫХ ПРОЦЕССОРОВ 316.5 KB
  Принцип работы процессора. Основные параметры процессора. Программы для диагностики процессора. Процессоры персональных компьютеров отвечают единому стандарту который задан фирмой Intel мировым лидером в производстве процессоров для ПК. От процессора зависит как быстро будут запускаться программы и даже насколько быстро будет происходить процесс архивации данных в WinRR не говоря уже о создании трёхмерной анимации в 3D MX Studio.
86076. Организация информационной системы управления предприятием ООО «Строй лига» 470 KB
  Чтобы должным образом функционировать в условиях маркетинга, необходимо получать адекватную информацию до и после принятия решений. Существует множество причин, в силу которых маркетинговая информация должна собираться при разработке, реализации и пересмотре маркетингового плана фирмы...