3843

Принцип действия полупроводникового транзистора

Лабораторная работа

Физика

Цель работы: ознакомиться с принципом действия полупроводникового транзистора. Задача: получить выходные характеристики транзистора по напряжению в схеме с общей базой, рассчитать коэффициент усиления транзистора по напряжению. Приборы и прин...

Русский

2012-11-08

121 KB

31 чел.

Цель работы: ознакомиться с принципом действия полупроводникового транзистора.

Задача: получить выходные характеристики транзистора  по напряжению в схеме с общей базой, рассчитать коэффициент усиления транзистора по напряжению .

Приборы и принадлежности: лабораторный стенд - вольтметр; милливольтметр, источник питания, транзистор.

ОСНОВЫ ЗОННОЙ ТЕОРИИ

Электроны в отдельном атоме могут занимать только вполне определенные энергетические уровни. В изолированном атоме расстояние между уровнями энергии составляет несколько электронвольт. Но когда соединяются два атома, их электроны в соответствии с принципом запрета Паули не могут иметь одну и ту же энергию. В результате происходит расщепление уровней энергии. Каждый уровень превращается в два уровня, разделенные малым энергетическим интервалом. А так как большинство твёрдых тел имеет кристаллическую структуру, то в любом кристалле соединены вместе многие миллионы атомов, и в результате получится огромное число энергетических уровней, образующих разрешенные энергетические зоны. Расстояние между соседними энергетическими уровнями в зоне . Поэтому зоны можно считать практически непрерывными (рис.1).

Разрешенные энергетические зоны разделены зонами запрещённых значений энергии (), называемыми запрещёнными энергетическими зонами.

Обычно электроны находятся в валентной зоне. Будет ли твердое тело диэлектриком, проводником или полупроводником, зависит от структуры энергетических зон (рис.2).

В металлах валентная зона заполнена электронами только частично и примыкает к зоне проводимости, поэтому электроны могут легко переходить из валентной зоны в зону проводимости. С другой стороны, если валентная зона, заполненная электронами, чётко отделена от зоны проводимости достаточно широкой запрещенной зоной ( > ), то твёрдое тело является диэлектриком. Наконец, в полупроводнике запрещенная зона узкая ().

Рис.1.Энергетические уровни электронов в металле

Рис.2. Энергетические зоны в твёрдых телах( ЗП – зона проводимости, ЗЗ – запрещённая зона, ВЗ – валентная зона)

Каждый главный уровень энергии подразделяется на множество подуровней. При температуре  валентная зона полностью заполнена электронами, а зона проводимости полностью свободна и полупроводник не проводит электрического тока. При повышении температуры электроны начинают обмениваться энергией о ионами кристаллической решетки. Благодаря этому, электрон может получить добавочную кинетическую энергию порядка  (где  - постоянная Больцмана). Такие электроны становятся основными носителями заряда. Но проводимость возникает и по другой причине. В валентной зоне освобождаются квантовые состояний, не занятые электронами, - дырки. При наличии дырок электроны могут рекомбинировать с ними. Прежние заполненные состояния при этом освобождаются, т.е. превращаются в дырки и т.д. Такая проводимость называется собственной в отличие от примесной проводимости, обусловленной наличием примесей атомов других химических элементов. При наличии примесей появляются добавочные энергетические уровни, располагающиеся в запрещенной зоне полупроводника (рис.3).

а)  - тип      б)  - тип

Рис.3. Примесные уровни в легированных полупроводниках:

а)  - типа, б)  - типа

Допустим, что добавочные уровни зоне в запрещенной зоне появились вблизи нижнего края зоны проводимости (рис.3, а). С этих уровней электроны будут переходить в зону проводимости. Если  мала по сравнению с , то количество электронов в зоне проводимости может увеличиться на несколько порядков. Примеси такого типа, поставляющие электроны в зону проводимости, называются донорами, а сам полупроводник обладает проводимостью  - типа.  Примером донорной примеси могут служить атомы пятивалентного мышьяка, вводимые в кристаллическую решетку четырехвалентного кремния.

Рис.3, б поясняет акцепторную примесную проводимость, где основными  носителями являются дырки. Такой полупроводник обладает проводимостью  - типа. Таким образом, примеси играют значительную роль - с их помощью можно управлять проводимостью полупроводников.

ПРИНЦИП РАБОТЫ ТРАНЗИСТОРА

Важнейшее применение полупроводники с  переходом находят в транзисторах. Транзистор  - типа (рис.4) состоит из трёх полупроводниковых областей: полупроводника  - типа, называемого эмиттером (в нем большая концентрация донорных примесей), полупроводника  - типа, называемого базой, и полупроводника  - типа, называемого коллектором.

Рис.4. Схема включения транзистора - типа ( с общей базой).

Контактное поле  в обоих  переходах направлено от электронного к дырочному полупроводнику, такое направление  - запорное, противоположное направление - пропускное. Включим транзистор в схему, как показано на рис.4. Электрический ток внутри эмиттера создается главным образом движением электронов, являвшихся основными носителями заряда. Эти электроны проходят через  - переход в область базы, а так как толщина базы очень мала (), то под воздействием электрического поля  электроны движутся по направлению к коллектору, не встречая на своём пути ни одной дырки и пройдя через  - переход, попадают в коллектор уже в качестве основных носителей заряда. Тем самым они меняет ток в коллекторе. Таким образом, всякое изменение тока в цепи эмиттера будет вызывать изменение тока и в цепи коллектора.

В соответствии с законом Кирхгофа существует соотношение между токами . Обычно <<, следовательно, ток коллектора лишь незначительно меньше тока эмиттера, и можно считать. Для транзисторов с общей базой коэффициент , т.е. коэффициент усиления по току близок к единице.

Коэффициент усиления по напряжению определяется формулой , где  - сопротивление нагрузки в выходной цепи;  при .

Так как >>, то >>, эффект усиления по напряжению связан с большой разницей в сопротивлениях.

Так как между токами  и существует линейная зависимость, то

ОПИСАНИЕ УСТАНОВКИ И МЕТОДА ИЗМЕРЕНИЙ

На рис.5дана схема лабораторного стенда. Между эмиттером и базой подается напряжение , между коллектором и базой подается напряжение , либо , которое меняется переключателем .

Рис.5.Схема лабораторного стенда.

Изменяя значение сопротивления , которое находится в цепи эмиттера, тем самым мы меняем напряжение на входе транзистора . Так как любое изменение тока в цепи эмиттера порождает изменение тока в цепи коллектора, то, следовательно, будет меняться и . Зависимость напряжения на выходе  от напряжения на входе транзистора  имеет вид, изображенный на рис.6 (для разных значений ). Следовательно, можно по графику рассчитать коэффицент усиления транзистора по напряжению  на наиболее крутом участке, который соответствует линейной зависимости  от  (рис.6) Из графика видно, что для большего значения  приращение  больше, значит, коэффициент  будет больше.

Рис.6. Определение коэффициента усиления транзистора по напряжению

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1.  Ознакомиться с установкой. Включить цепь коллектора ключом ВКЛ. Переключателем  установить напряжение питания .
  2.  Включить цепь эмиттора поворотом ручки .
  3.  Изменяя  от 0 до 0,5 В с шагом 0,05 В, записать соответствующие значения  и  в таблицу.
  4.  По полученным данным построить кривую зависимости .
  5.  По наклону прямой на наиболее крутом прямолинейном участке определить коэффициент усиления транзистора по напряжению(см. рис.6)

.

  1.  Перевести переключатель  в положение  и повторить пункты 3,4,5.
  2.  Результаты измерений и расчетов занести в таблицу 1.

Таблица 1

, В

, В при

, В при

1

2

3

.

.

.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Пояснить различия между металлами, полупроводниками и диэлектриками с точки зрения зонной теории.
  2.  Пояснить различие в температурной зависимости сопротивления металлов и полупроводников.
  3.  Пояснить механизм собственной и примесной проводимости.
  4.  Пояснить принцип действия транзистора  - типа.
  5.  Кремниевый проводник легирован фосфором. Будут ли примесные атомы донорами или акцепторами? Какого типа получится полупроводник?
  6.  Кремниевый проводник легирован бором. Будут ли примесные атомы донорами или акцепторами? Какого типа получится полупроводник?
  7.  Для схемы с общей базой известно: коэффициент усиления равен 27, входное сопротивление равно 50 Ом, выходное сопротивление равно 1500 Ом. Чему равен коэффициент усиления транзистора по напряжению?

СПИСОК ЛИТЕРАТУРЫ

  1.  Д.В.Сивухин. Общий курс физики. Электричество.− М.: − Наука, 1983 − 687 с.
  2.  Трофимова Т. И. Курс физики. − М. :Высшая школа, 1997. − 542 с.
  3.  Яворский Б. М., Детлаф А. А. Справочник по физике − М.: Наука, 1985.− 512 с.
  4.  И.В.Савельев. Курс общей физики. Книга 5. Квантовая оптика.Атомная физика.Физика твёрдого тела. Физика атомного ядра и элементарных частиц. − М.: Астрель, 2001.


 

А также другие работы, которые могут Вас заинтересовать

32548. ТИПЫ ОБУЧАЮЩИХ ПРОГРАММ С ПЕДАГОГИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ. В КАКИХ СЛУЧАЯХ ЦЕЛЕСООБРАЗНО ИСПОЛЬЗОВАТЬ КОМПЬЮТЕР 54.5 KB
  Разработка и использование ЭС образовательного назначения ТИПЫ ОБУЧАЮЩИХ ПРОГРАММ С ПЕДАГОГИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ. ТИПЫ ОБУЧАЮЩИХ ПРОГРАММ с педагогической точки зрения В настоящее время в учебном процессе используется большое число обучающих программ весьма отличающихся по различным параметрам. Но когда речь идет о рекомендациях по разработке обучающих программ необходимо прежде всего уточнить какие именно программы имеются в виду. Ведь различие между интеллектуальными обучающими программами и программами на отработку умений и навыков...
32549. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЕКТИРОВАНИЯ ОБУЧЕНИЯ. УРОВНИ ПРОЕКТИРОВАНИЯ ОБУЧАЮЩИХ ПРОГРАММ 48 KB
  Разработка и использование ЭС образовательного назначения ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЕКТИРОВАНИЯ ОБУЧЕНИЯ. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЕКТИРОВАНИЯ ОБУЧЕНИЯ В настоящее время наметилось два подхода к проектированию обучающих программ. В принципе можно создать несколько эффективных обучающих программ и без психологической теории обучения и технологии компьютерного обучения например путем проб и ошибок. Проектирование обучающих программ должно базироваться на надежном психологическом фундаменте причем прежде всего необходимо проектировать...
32550. КТО СОЗДАЕТ ЭЛЕКТРОННЫЕ СРЕДСТВА ОБРАЗОВАТЕЛЬНОГО НАЗНАЧЕНИЯ. РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ УЧЕБНЫХ ЦЕЛЕЙ. КАКИЕ МЕТОДЫ ОБУЧЕНИЯ ИСПОЛЬЗОВАТЬ 151.5 KB
  Типовой состав разработчиков программного средства Выделяются четыре базовые категории: авторы учебного материала; компьютерные методисты; системотехники КСО; специалисты по реализации КСО. В создании конкретного КСО участвуют как правило один компьютерный методист и один системотехник КСО. Компьютерный методист это специалист владеющий компьютерной дидактикой и ориентирующийся в ПО которая рассматривается в КСО. В круг его задач входят формирование структуры КСО выбор психологопедагогической стратегии и проработка используемых...
32551. Контакторыи. Коммутация силовых цепей электродвигателей 281.61 KB
  По роду коммутируемого тока контакторы делят на контакторы постоянного и переменного тока. Как правило род тока в цепи управления которая питает электромагнитный привод совпадает с родом тока главной коммутируемой цепи. Однако известны случаи когда катушки контакторов переменного тока получают питание от цепи постоянного тока. Конструктивная схема контактора постоянного тока показана на рис.
32552. Электромагнитные муфты 341.13 KB
  24 показана схема муфты серии ЭТМ с магнитопроводящими фрикционными дисками. Другой зажим катушки подключают к источнику питания постоянного тока через корпус муфты. Электромагнитная контактная дисковая муфта При включении муфты магнитный поток Ф созданный током протекающим по виткам катушки проходит через корпус пакет внутренних 6 и наружных 4 дисков и замыкается через якорь 5.
32553. Устройства обработки информации 19.92 KB
  Рычажный контактный узел с шарнирным закреплением работающий с эффектом притирания и перекатывания контактов что способствует их лучшему самоочищению и уменьшению переходного сопротивления поэтому они часто используются в мощных коммутационных устройствах например контакторах. Жидкометаллические контакты основными достоинствами которых являются малое переходное сопротивление отсутствие необходимости в контактном нажатии отсутствие эффектов пригорания и залипания контактов возможность работы при высоком давлении температуре...
32554. Реле времени (таймеры) 13.93 KB
  По способу задержки виду замедлителя: электромагнитное замедление до 10 сек; механическое замедление: пневматические и моторные от 3 до 30 мин; электронное замедление: конденсаторные и счётноимпульсные десятки сек; программнореализуемые любые задержки времени. При работе систем защиты и автоматики часто требуется создать выдержки времени между срабатыванием двух или нескольких аппаратов а также при возникновении необходимости производить операции в определённой временной последовательности автоматическое...
32555. Электромагнитные реле времени 190.42 KB
  Реле времени с электромагнитным замедлением При отключении обмотки реле 1 рис. В результате магнитный поток в сердечнике реле убывает медленно якорь 5 остается в притянутом положении и контакты реле 4 размыкаются с выдержкой времени в несколько секунд. Такие реле времени не отличаются стабильностью но находят широкое применение благодаря простоте и дешевизне.
32556. Реле времени КТ 88.94 KB
  28 приведен пример использования реле времени КТ в схеме управления циклом движения суппорта которая обеспечивает его рабочий ход р. задержку времени на концевике SQ2 и холостой ход х. Рабочий ход суппорта обеспечивается контактором КМ1 холостой ход контактором КМ2 а выдержка времени выстоя реле временем КТ.