3847

Определение коэффициента вязкости жидкости методов стокса

Лабораторная работа

Физика

Определение коэффициента вязкости жидкости методов стокса Приборы и принадлежности: Стеклянный цилиндр с исследуемой жидкостью, шарики малого диаметра, микрометр, секундомер, пинцет, масштабная линейка. Теория работы и описание приборов При движении...

Русский

2012-11-09

207.5 KB

44 чел.

Определение коэффициента вязкости жидкости методов стокса

Приборы и принадлежности:

Стеклянный цилиндр с исследуемой жидкостью, шарики малого диаметра, микрометр, секундомер, пинцет, масштабная линейка.

Теория работы и описание приборов

При движении жидкости между её слоями действуют силы внутреннего трения. Поэтому различные слои жидкости при её движении имеют различную скорость. Жидкость, обладающая внутренним трением, называется вязкой. Разобьем мысленно жидкость на ряд слоев очень малой толщины и параллельных стенкам трубы (рис. 6). Слой жидкости, прилегающий к стенке, движется с наименьшей скоростью V. Следующий слой движется уже с большей скоростью V1, следующий – со скоростью  V2  и т.д.

Пусть расстояние между слоями будет .  Величина  называется градиентом скорости, т.е. представляет собой изменение скорости на единицу длины в направлении, перпендикулярном направлению скорости.

Опыты показали, что сила внутреннего трения F пропорциональна величине площади соприкосновения S движущих слоев и градиенту скорости :

 (1)

Выражение (1) есть закон Ньютона для внутреннего трения, где – коэффициент внутреннего трения или коэффициент вязкости. Из формулы (1) получим:

 (2)

Положим ; , тогда величина коэффициента вязкости будет равна численному значению силе внутреннего трения, возникающего при движении одного слоя площадью, равной единице, относительно другого слоя при градиенте скорости, равном единице.

Коэффициент вязкости зависит от рода жидкости и уменьшается с повышением температуры. Из (2) единица вязкости равна

.

Эта единица называется Ньютон-секунда на квадратный метр. Ньютон-секунда на квадратный метр – коэффициент вязкости такой жидкости, в котором 1 м2 слоя испытывает силу внутреннего трения 1Н при градиенте скорости 1 с-1.

Коэффициент вязкости может быть определен методом падающего шарика в вязкой среде (методом Стокса). Рассмотрим падение шарика в вязкой покоящейся жидкости. Тело, движущееся в жидкости, увлекая прилегающие к нему слои, испытывает, благодаря вязкости, сопротивление (трение) со стороны ближайших слоев жидкости.

Сила сопротивления зависит от скорости движения тела, его размеров и формы. Как установил Стокс, для тел шарообразной формы, движущихся с небольшой скоростью, сила сопротивления жидкости F пропорциональна скорости движения, радиусу шара r и коэффициенту вязкости жидкости  :

 (3)

Формула Стокса применима также и к случаю падения дождевых капель в атмосфере.

На шарик массой т и радиусом r, падающий со скоростью U в жидкости с вязкостью   действует три силы: сила тяжести P, выталкивающая сила жидкости F1, сила сопротивления жидкости F (рис. 7).

Так как силы Р и F1 постоянны, а сила F возрастает с увеличением скорости движения шарика, то с некоторого момента времени эти силы уравновесят друг друга, т. е. Равнодействующая всех сил станет равной нулю, и , следовательно, начиная с этого момента времени, шарик будет двигаться равномерно. Тогда

 P= F1+F (4)

 Учитывая, что по второму закону Ньютона

,

а по закону Архимеда выталкивающая сила

 

где – плотность шарика;

– плотность жидкости;

m1 – масса вытесненной шариком жидкости;

V – объем шарика;

r – радиус шарика.

Тогда уравнение (4) можем записать:

 

или

;

откуда после соответствующих преобразований

 (5)

Скорость равномерного движения шарика в жидкости определяется по формуле , где t – время, в течении которого шарик прошел расстояние l.

 (6)

Подставив в (6) значение r, выраженное через диаметр шарика D, получим окончательное выражение для коэффициента вязкости:

 (6)

Порядок  выполнения работы

  1.  Масштабной линейкой измерить расстояние l между кольцевыми метками a и b (рис.7) на цилиндре. Метка a должна отстоять от поверхности жидкости на расстояние не менее 4 – 5 см, ниже которого движение шарика будет равномерным.
  2.  Измерить при помощи микрометра диаметр шарика D.
  3.  Пинцетом опустить шарик в цилиндр по осевой линии цилиндра.
  4.  В момент прохождения шариком верхней кольцевой метки a пустить в ход секундомер и остановить его в момент прохождения шариком второй кольцевой метки b. При определении момента прохождения шарика через метку, глаз должен находиться на одном уровне с меткой. Отсчет по секундомеру определяет время t прохождения шариком пути l. Опыт повторить пять раз.
  5.  По полученным данным вычислить коэффициент вязкости по формуле (7), в которой

 

  1.  Результаты измерений и вычислений занести в таблицу.
  2.  Вычислить абсолютную погрешность каждого опыта по формуле: , где i – номер измерения; i принимает значения 1, 2, 3, 4, 5.
  3.  Вычислить среднюю абсолютную погрешность по формуле:     
  4.  Вычислить относительную погрешность результата косвенных измерений по формуле:

 

Таблица наблюдений

№ опыта

D

l

t



Единицы измерен

м

м

с

1

2

3

4

5

Средн.

Окончательный результат:

Указания к работе:

Значение плотности жидкости и шарика указаны на приборе.


Контрольные вопросы

  1.  Дать математическое выражение  и формулировку закона Ньютона для определения силы внутреннего трения.
  2.  Что называется градиентом скорости?
  3.  Какая жидкость называется вязкой?
  4.  Объяснить физический смысл коэффициента вязкости.
  5.  Дать определение коэффициента вязкости. Указать размерность этой величины.
  6.  Сформулировать закон Архимеда.
  7.  Сформулировать и выразить математически закон Стокса.
  8.   Какие силы действуют на шарик, падающий в жидкости?
  9.  При каких условиях и почему шарик будет двигаться в жидкости равномерно?
  10.  Вывести формулу для определения коэффициента вязкости жидкости.


 

А также другие работы, которые могут Вас заинтересовать

25542. Дети в приемной семье 16.16 KB
  Чем младше ребенок которого забирают из детских учреждений тем легче ему адаптироваться в новой семье. Ребенок испытывает удовольствие от своего нового положения он готов к жизни в семье. Вы заметите что ребенок испытывает и радость и тревогу одновременно. Учтите: перед ребенком в этот период появляется много новых людей которых он не в состоянии запомнить ребенок пока не в силах запомнить и усвоить ту массу новых впечатлений которая обрушилась на него.
25543. Дети в семье алкоголиков 75.1 KB
  Дети характеризуются синдромом педагогической запущенности заниженной самооценкой часто пребывают в состоянии депрессии страха и горя. Такие дети ведут себя вызывающе и заставляют обращать на себя внимание создавая эмоциональнонапряженные ситуации. Как бы тяжело ни напрягались такие дети убирая квартиру приготовляя еду зарабатывая деньги пробуя сохранить семью они все равно обладают заниженной самооценкой.
25545. Единственный ребенок в семье 15.5 KB
  Ребенок маленький взрослый До поступления в детский сад а то и в школу единственный ребенок общается преимущественно со взрослыми. В семье ребенок хорошо усваивает модель отношений в которой один выше по иерархии родитель а другой ниже ребенок.Все это может привести к тому что в детском коллективе ребенок либо станет одиночкой либо будет всячески противопоставлять себя коллективу привлекая к себе персональное внимание учителя или воспитателя.
25546. Жизненный цикл семьи 12.27 KB
  Сорокин выделил 4 стадии: брачная пара в момент образования семья с маленькими зависимыми детьми семья с 1 взрослым ребенком стадия отделения всех детей. Эти события образуют 4 стадии семейного цикла: предродительство 11 года стадия репродуктивного родительства 25 года стадия социализированного родительства – ограничивается достижением совершеннолетия детьми либо моментом отделения последнего из взрослых детей стадия прародительства настает с наступлением первого внука 199 года Варианты стадий: продолженная...
25547. Функции семьи 12.52 KB
  Хозяйственнобытовая Поддержание физического здоровья членов семьи уход за детьми и престарелыми членами семьи. Получение хозяйственнобытовых услуг одними членами семьи от других. Экономическая Экономическая поддержка несовершеннолетних и нетрудоспособных членов общества Получение материальных средств одними членами семьи от других.
25548. Характеристика жилищных проблем молодых семей и перспективы их решения 16.22 KB
  Жилищная проблема молодых семей и ее особенности Как отмечалось ранее жилищная проблема – одна из острейших проблем стоящих перед молодежью. Сутью жилищной проблемы стало обеспечение доступности жилища для семей и одиноких граждан у которых доходы не соответствуют затратам на его воспроизводство то есть строительство реконструкцию модернизацию ремонт содержание 18. Так жилье бедных семей только на 58 обеспечено телефонами на 83 централизованным водоснабжением холодной водой и на 73 горячей водой на 87 центральным...
25549. Сущность, цель, принципы, направления в РФ 17.58 KB
  В конце прошлого века в российской социологической литературе достаточно четко обозначились 2 концептуальных подхода интерпретирующие семейные отношения и необходимость воздействия на них в рамках семейной политики. Отсюда следовала цель семейной политики: укрепление семьи как социального института. Разнообразие подходов к раскрытию сущности и целей семейной политики привели к ее пониманию как комплексной и межотраслевой. В России семейная политика получила государственное определение в 1996 году в указе президента РФ Об основных...