3849

Абсолютна та відносна похибка

Лабораторная работа

Информатика, кибернетика и программирование

Абсолютна та відносна похибка. Мета роботи: вивчити і засвоїти поняття абсолютної й відносної похибки та методи їх оцінювання. Короткі теоретичні відомості. Зв'язок між кількістю точних десяткових знаків і відносною похибкою наближеного числа дається у наведеній далі теоремі.

Украинкский

2012-11-09

78.27 KB

33 чел.

Абсолютна та відносна похибка

Мета роботи: вивчити і засвоїти поняття абсолютної й відносної похибки та методи їх оцінювання.

Короткі теоретичні відомості

Зв'язок між кількістю точних десяткових знаків і відносною похибкою наближеного числа дається у наведеній далі теоремі.

Теорема. Якщо додатне наближене число а має п точних десяткових знаків, то відносна похибка δ цього числа задовольняє умову

δ  ≤ ,  

де атперша  значуща цифра числа а .

Наслідок 1. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками можна прийняти

δa =                                           

де аm - перша значуща цифра числа а .

Наслідок 2. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками при п ≥ 2 практично можна прийняти   

δa = .

                                              

 Означення. Вважатимемо, що n перших значущих цифр (десяткових знаків) наближеного числа а є точними,, якщо абсолютна похибка цього числа не перевищує половини одиниці розряду, котрий виражається його n-ною значущою цифрою (рахуючи зліва направо), тобто

Для визначення кількості точних знаків наближеного числа а, якщо відома його відносна похибка δ, можемо скористатися наближеною формулою

δ =   

де ∆ - абсолютна похибка наближеного числа а . Із цієї формули одержуємо, що ∆ = δ |a|.  Маючи ∆, на підставі означення легко знайти кількість точних десяткових знаків наближеного числа а .

1. Похибки суми.

Теорема 1. Абсолютна похибка алгебраїчної суми декількох наближених чисел не перевищує суми абсолютних похибок цих чисел.

|∆и||∆х1| + |∆х2| + ... +|∆хп| 

Наслідок. За граничну абсолютну похибку алгебраїчної суми декількох наближених чисел можна прийняти суму граничних абсолютних похибок цих чисел, тобто

и = х1 + х2 + ... + хп .

Теорема 2. Гранична відносна похибка суми декількох наближених чисел одного й того ж знака не перевищує найбільшу з граничних відносних похибок цих чисел.

max = .

   

2. Похибки різниці. Розглянемо різницю двох наближених чисел х1 та х2:

и = х12 .      

 Тоді, на підставі наслідку з теореми 1,

и = ∆х1 + х2 , δu=,                                                 (6)

де А – точне  значення різниці х12. 3 останньої формули випливає, що для близьких чисел х1 та х2 гранична відносна похибка буде досить велика. Тому в обчислювальних алгоритмах бажано уникати віднімання близьких чисел.

3. Похибки добутку. 

| ∆u | = | А – u | ≤ x2x3 … xn | ∆x1| + х1 х3… xn| ∆x2| +…+ 

                                                             + x1 x2 … хn-1  + ∆хп .   

За граничну абсолютну похибку добутку можна взяти ∆u = x2x3 … xnx1+ х1 х3… xnx2 +…+ x1 x2 … хn-1  + ∆хп  .

Тоді за граничну відносну похибку добутку можемо прийняти

.

4. Похибки частки. Нехай A1 = х1 + ∆ х1, A2 = х2 + ∆ х2 , де для простоти будемо вважати, що x1 > 0, x2 > 0,, . Тоді ,

За граничну відносну похибку частки можна прийняти

.

5. Похибки степеня. Нехай  А = (х + х)т , и = хт , де  т – натуральне число,  х > 0. Використовуючи похибки добутку, одержуємо

|∆u| < mxm - 1|∆x|,  δ ≤ mδ1,

де  δ – відносна похибка степеня; δ1 – відносна похибка аргументу х. Тому за граничні абсолютну та відносну похибки степеня можемо прийняти

u= mxm - 1x, δu=x

Із наведених похибок арифметичних операцій випливає, що операції додавання та віднімання (при великій різниці між числами) не погіршують точності результату порівняно з точністю алгебраїчних доданків, а операції множення, ділення і піднесення до степеня суттєво погіршують точність результату.

Варіант 17

Оцінити абсолютну та відносну похибку при обчисленні величини F за умов:

a) заданих точних значеннях величин аргументів x1 , x2 , x3;

B) заданих  значеннях величин аргументів x1 , x2 , x3  з похибкою = N*10-3, де N – номер варіантy

F = 4x12 + 3x22 + 5x32 - 4x2x3 - 3x1 + 11cosec (x1 - x3) ;

Текст програми:

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, jpeg, ExtCtrls, StdCtrls,Math;

type

 TForm1 = class(TForm)

   GroupBox1: TGroupBox;

   Label1: TLabel;

   Label2: TLabel;

   Label3: TLabel;

   Edit1: TEdit;

   Edit2: TEdit;

   Edit3: TEdit;

   Button1: TButton;

   GroupBox2: TGroupBox;

   Label4: TLabel;

   Edit4: TEdit;

   Label5: TLabel;

   Label6: TLabel;

   Edit5: TEdit;

   Edit6: TEdit;

   Button2: TButton;

   Image1: TImage;

   procedure Button2Click(Sender: TObject);

   procedure Button1Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.Button2Click(Sender: TObject);

begin

 Edit1.Text:='';

 Edit2.Text:='';

 Edit3.Text:='';

 Edit4.Text:='';

 Edit5.Text:='';

 Edit6.Text:='';

end;

procedure TForm1.Button1Click(Sender: TObject);

var x:array [1..3] of real;

    F, ab_poh, vid_poh, dx: real;

begin

dx:=0.017;

  x[1]:=StrtoFloat(Edit1.Text);

  x[2]:=StrtoFloat(Edit2.Text);

  x[3]:=StrtoFloat(Edit3.Text);

   F:=4*sqr(x[1])+3*sqr(x[2])+5*sqr(x[3])-4*x[1]*x[3]-3*x[2]+11*csc(x[1]-x[3]);

      Edit4.Text:=FloattoStrF(F,ffFixed,7,3);

   ab_poh:=abs(9*2*x[1]*dx)+abs(6*2*x[2]*dx)+abs(5*2*x[3]*dx)+

          +abs(7*(x[2]+x[3])*dx)+abs(5*x[1]*dx)+abs(24*1/3*(x[2]+x[3])*dx);

      Edit5.Text:=FloatToStrF(ab_poh,ffFixed,6,3);

   vid_poh:=abs(ab_poh/F)*100;

      Edit6.Text:=FloatToStrF(vid_poh,ffFixed,5,2)+'%';

end;

end.

Результат виконання програми:

Висновок: в ході виконання даної лабораторної роботи я вивчила і засвоїла поняття абсолютної та відносної похибки і методи їх оцінювання.


 

А также другие работы, которые могут Вас заинтересовать

47172. Ремонт поверхностей деталей. Способ дополнительных ремонтных деталей, способ замены части детали. Ремонт корпусных деталей 73.28 KB
  Способ дополнительных ремонтных деталей способ замены части детали. Ремонт корпусных деталей. В ремонтной практике применяют несколько способов восстановления деталей.
47173. Возникновение Австро-Венгрии 73.5 KB
  Административнотерриториальное деление Цислейтания земли австрийской короны королевства: Богемия Далмация Галиция и Лодомерия; эрцгерцогства: Нижняя Австрия Верхняя Австрия; герцоргства: Буковина Каринтия Крайна Зальцбург Штирия Верхняя и Нижняя Силезия; маркграфства Моравия Истрия; княжеские округа: Тироль Горица и Градишка; земля Форарльберг; Австрийское Приморье; город Триест Транслейтания земли венгерской короны королевства: Венгрия Хорватия и Славония; город Фиуме Босния и Герцеговина с 1908 года ...
47174. Информационное обеспечение менеджмента 73.5 KB
  Инвестиции: определение виды Инвестиции в объекты предпринимательской деятельности осуществляются в различных формах. По объектам вложения денежных средств выделяют реальные и финансовые инвестиции. Реальные инвестиции авансирование денег в материальные и нематериальные активы. Финансовые инвестиции вложения средств в ценные бумаги: долевые акции и долговые облигации.
47175. Ймовірність складних подій 73.5 KB
  Знайти: а імовірність того що деталь яку вилучили з третоьго ящика буде стандартною; б імовірність того що деталь яку вилучили з третього ящика належала першому ящику коли вона виявилась стандартною.93856 Задача 6 1 деталь 1 деталь а Для розвязання цієї задачі скористаємося формулою повної ймовірності. Позначимо через А подію âз третього ящика вилучена стандартна детальâ. Шукана ймовірність того що з третьої...
47177. Профессиональные объединения издателей. Международная роль ассоциаций. Специализированные ассоциации 74.5 KB
  Профессиональные объединения издателей На Западе ассоциации союзы занимают важное место в общей системе издательского дела. Вопросов которыми занимаются ассоциации издателей довольно много: осуществление связи с правительственными органами имеющими отношение к книгоизданию представительство интересов издательского дела как отрасли перед правительством; осуществление связей с книготорговой и полиграфической отраслями с профессиональными объединениями книготорговцев и полиграфистов; разработка юридических вопросов касающихся...
47178. КЛЕТКА КАК ОТКРЫТАЯ СИСТЕМА 74.5 KB
  Для поддержания сложной динамической структуры живой клетки требуется непрерывная затрата энергии. Так же энергия необходима для осуществления большинства функций клетки. Различают: Анаболизм ассимиляция эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки.
47179. Субъекты и объекты природопользования 74.68 KB
  Бринчука 1 может выступать в двух основных качествах: а как возможный по закону обладатель такого права пользования и б как обладатель субъективного права пользования природными ресурсами носитель установленных законом прав и обязанностей который является субъектом правоотношений пользования землей ее недрами водами и лесами объектами животного мира и атмосферным воздухом. В качестве субъекта права общего природопользования выступают граждане Российской Федерации иностранцы и лиц без гражданства поскольку они обладает...