38506

Обработка отверстий детали «переводник шлицевой» без применения технологической оснастки

Практическая работа

Производство и промышленные технологии

В настоящее время для обработки отверстий применяют различного рода приспособления. При обработке отверстий без использования оснастки возникают такие условия что настройка на операцию обработки внутренних шпоночных пазов происходит с увеличением нормы времени штучное время. Это объясняется тем что количество установок детали ее переустановок время на настройку операции на различных приспособлениях будет различным в зависимости от быстродействия рассматриваемой технологической оснастки. Определение основного времени...

Русский

2013-09-28

1.59 MB

8 чел.

2. АНАЛИЗ СУЩЕСТВУЮЩИХ СПОСОБОВ ОБРАБОТКИ РАССМАТРИВАЕМЫХ ОТВЕРСТИЙ.

В настоящее время, для обработки отверстий применяют различного рода приспособления. В зависимости от типа производства применяют такую технологическую оснастку, которая обеспечивает максимально допустимую точность обработки, наряду с наименьшими затратами на производство, уменьшение норм времени и оснащение технологического процесса механической обработки детали.

На основе литературных источников, проанализируем существующие способы обработки рассматриваемых отверстий в зависимости от применяемой технологической оснастки.

2.1. Обработка отверстий детали «переводник шлицевой» без применения технологической оснастки.

    При обработке отверстий без использования оснастки, возникают такие условия, что настройка на операцию обработки внутренних шпоночных пазов происходит с увеличением нормы времени (штучное время). Качество получаемых шпоночных пазов  и точность получаемых размеров снижается. Это обуславливается тем, что погрешность установки  детали на базирующие элементы превышает допуски на обрабатываемое отверстие, вследствие чего, точность размеров и формы получаемого отверстия снижается в несколько раз. Быстродействие такого рода установочной схемы минимально. На рисунке 1. Представлена схема базирования детали «переводник шлицевой» на призме, оснащенной резьбовым зажимом (зажим планкой и двумя Т-образными болтами).

При обработке отверстий без использования специальной или универсальной технологической оснастки, также возможно смещение режущего инструмента «увод сверла», вследствие главной составляющей силы резания, неточной предварительной зацентровки отверстия, неточной ориентации

детали при радиальном перемещении

    На основе всего выше изложенного, произведем расчет режимов резания и нормирование операции сверления детали «переводник шлицевой», без использования технологической оснастки, согласно рекомендациям справочной литературы ([5] табл. 17 стр. 249) . Расчеты заносим в таблицу 1. Режимы резания и нормы времени.

Рисунок 1. Схема базирования детали «переводник шлицевой» на призме оснащенной простым резьбовым зажимом.

Расчет режимов резания производим по рекомендациям ([5] табл. 17 стр. 249).

Для всех рассматриваемых способов обработки в различных оснащенных приспособлениях, режимы резания будут одинаковыми, так как начальные условия и параметры обработки постоянны. Нормы времени на каждом рассматриваемом способе различны. Это объясняется тем, что количество установок детали, ее переустановок, время на настройку операции на различных приспособлениях будет различным, в зависимости от быстродействия рассматриваемой технологической оснастки.

ИСХОДНЫЕ ДАННЫЕ:

На фрезернос станке производится сверление 6-ти отверстий диаметром D=12-0,020 мм, глубина сверления H= 12-0,031 мм. Система СПИД – средней жесткости. Обработка с применением СОЖ.

Выбор типа сверла, установление его геометрических конструктивных параметров

Принимаем согласно ([8], табл. 30, стр. 188) режущий инструмент – шпоночная фрезы  12 мм по ГОСТ 9140-68. Эскиз шпоночная фрезы  - рисунок 2.

Угол  2φ=900; Длина фрезы 80; длина режущей части h=18м. Угол наклона спирали ω=200.

Рисунок 2. шпоночная фреза  диаметром 12 мм ГОСТ 9140-68-77.

  1.  Определение глубины резания.

Припуск на обработку снимаем за один проход. Глубина резания при фрезерование  определяется по формуле:

t=

t=80/2=40

  1.  Назначение подачи.

При фрезерование шпоночных пазов выбираем допустимую возможную подачу по прочности шпоночных пазов

S =0,12 – 0,2 мм/об.

Уточняем подачу по паспортным данным станка , тогда  ([9], стр.421).

  1.  Определение скорости главного движения резания.

Скорость главного движения резания рассчитываем по формуле:

Значение показателей выбираем из ([8], табл. 17, стр. 269):

= 0,7, q = 0.4, y = 0.7, m = 0.2.

Т – период стойкости инструмента, определяется в зависимости от диаметра сверла, в нашем случае Т = 25 минут.

общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания:

где  - коэффициент на обрабатываемый материал, определяется по формуле:

Значение коэффициента  и nv принимаем согласно условиям из ([8], табл. 6, стр. 263), тогда:

- коэффициент на инструментальный материал, в нашем случае  = 1;

– коэффициент, учитывающий глубину сверления,  = 1, тогда:

  1.  Определение частоты вращения шпинделя, соответствующей найденной скорости главного движения резания.

n=

n==329,03

   Корректируем частоту вращения шпинделя по паспортным данным станка  ([9], стр. 421) и устанавливаем действительное значение частоты вращения

  1.  Определение действительной скорости главного движения резания.

(м/мин)

(м/мин)

  1.  Определение крутящего момента и главной осевой силы.

Осевая сила при сверлении определяется по формуле:

Значения показателя , q, y определяем по (табл. 32; стр.253 [2]),

= 0.0345, q = 2,  y = 0.8.

Коэффициент, учитывающий фактические условия обработки в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением:

Определим крутящий момент:

Осевую силу определяем по формуле:

Значения показателя , q, y определяем по (табл. 32; стр.253 [2]),

 = 68, q = 1,  y = 0.7, тогда:

  1.  Определение мощности резания

Мощность резания определяем по формуле:

Проверяем достаточна ли мощность привода станка. Необходимо проверить выполнение уравнения:

Мощность на шпинделе станка:

По паспортным данным станкаем:  = 6 кВт;  = 0.75, тогда:

Получаем: 1,17 < 4,5 – обработка возможна.

Получаем: 1,17 < 4,5 – обработка возможна.

  1.  Определение основного времени фрезерование

Основное время фрезерование  по формуле:

где l –длина обрабатываемого отверстия, l = 20,9 мм;

- величина врезания инструмента, определяется по формуле:

- величина перебега инструмента,  = 0.5…3 мм, принимаем   = 3 мм, тогда:

  1.  Расчет нормы времени.

Штучное время обработки:

Где:  - основное (технологическое) время;

- вспомогательное время;

- время обслуживания рабочего места;

- время перерывов в работе.

Рассчитаем штучное время для 035 операции –фрезерования

Основное время обработки – это сумма основного времени на каждом переходе,  = 2,16 мин. (переходов 4)

Вспомогательное время – это время на вспомогательные функции:

= 1,22 мин – время на установку и снятие заготовки (для сверлильных станков с креплением на призме и зажимом планкой по Т-образным пазам стола станка).

= 0,05 мин – время на включение и выключение двигателя сверлильного станка, (повторяется 6раз).

= 0,1 мин – время на включение подачи фрезернго ча включается один раз).

= 0,13 мин – время на подвод режущего инструмента, (инструмент подводится 4 раза).

=0,25 мин – время зацентровки отверстия (норматив для фрезерныхй, центровка применяется 4 раза).

=0,35 мин – время на смену инструмента (смена спирального сверла на центровочное сверло, меняется 8 раз).

Следовательно, вспомогательное время на операции:

, мин.

Находим оперативное время:

Находим время обслуживания рабочего места:

Найдем время перерывов:

Найдем штучное время:

Таблица 8. Таблица нормирования операции

№ операции

, мин

мин

мин

мин

мин

мин

Фрезерование

2,16

6,04

8,2

0,33

0,41

8,94

  1.  Обработка отверстий детали «переводник шлицевойверсальной делительной головки (УДГ).

    Обработка отверстий детали переводчик шлицевойуниверсальной делительной головки позволяет исключить из технологического процесса операции, переустановку детали для сверления последующих отверстий. Для этого достаточно повернуть деталь в патроне УДГ. Базирование детали осуществляется с установкой детали в трехкулачковый патрон, которым оснащается УДГ. В зависимости от типоразмера универсально-делительные головки бывают трех исполнений с номинальным диаметром зажимной способность патрона 125мм; 160 мм; 250 мм. Эскиз универсальной делительной головки представлен на рисунке ….

Характеристика

Значение

1. Высота центров

85 (3 11/32")

2. Диаметр отверстия полного шпинделя, мм

14,9 (19/32")

3. Резьба рабочего конца шпинделя

М33х2

4. Конус Морзе шпинделя передний

2

5. Наибольший диаметр обрабатываемой детали, мм

160 (6 5/16")

6. Передаточное отношение

1:40

7. Диапазон деления включая простые числа

2-400

8. Расстояние от основания до торца шпинделя в его вертикальном положении, мм

180 (7 3/32")

9. Габаритные размеры основания, мм

212х156 (8&nbsp11/32")

10. Масса, кг

35,5

11. Токарный патрон

диаметр 100

Рисунок … Универсально делительная головка УДГ -160.

     Достоинством данной технологической оснастки, является ее универсальность, позволяющая поворачивать вокруг своей оси деталь установленную в трехкулачковый патрон, а так же, поворот относительно корпуса приспособления детали на определенный угол (до 450).

  1.  Расчет погрешности базирования детали в трехкулачковом самоцентрирующимся патроне.
    1.  Погрешность базирования детали «Расчет погрешности базирования детали в трехкулачковом самоцентрирующимся патроне.

Погрешность базирования детали  в трехкулачковом самоцентрирующимся патроне, определяется погрешностью выполнения базирующейся поверхности самой детали, по которой устанавливается деталь.

Из рекомендаций справочной литературы [7] определяем погрешность базирования детали:

мм;

мм

  1.  Расчет норм времени на операцию с применением универсально делительной головки.

Расчет производим согласно, рекомендациям [6] табл. 4.4., 4.5., 4.6. стр. 158-159).

Штучное время обработки:

Где:  - основное (технологическое) время;

- вспомогательное время;

- время обслуживания рабочего места;

- время перерывов в работе.

Рассчитаем штучное время для 035 операции – слесарно-сверлильной.

Основное время обработки – это сумма основного времени на каждом переходе,  = 2,16 мин. (переходов 4)

Вспомогательное время – это время на вспомогательные функции:

= 0,33 мин – время на установку и снятие заготовки (масса до 3-ех кг., с установкой в самоцентрирующийся трехкулачковый патрон).

= 0,05 мин – время на включение и выключение двигателя сверлильного станка, (повторяется 8 раз).

= 0,1 мин – время на включение подачи сверлильного станка, (подача включается один раз – далее не меняется).

= 0,13 мин – время на подвод режущего инструмента, (инструмент подводится 4 раза).

=0,25 мин – время зацентровки отверстия (норматив для сверлильных операций, центровка применяется 4 раза).

=0,35 мин – время на смену инструмента (смена спирального сверла на центровочное сверло, меняется 8 раз).

Следовательно, вспомогательное время на операции:

, мин.

Находим оперативное время:

Находим время обслуживания рабочего места:

Найдем время перерывов:

Найдем штучное время:

Таблица 8. Таблица нормирования операции.

№ операции

, мин

мин

мин

мин

мин

мин

Фрезерная

2,16

5,15

7,31

0,3

0,37

7,98

» в трехкулачковом самоцентрирующимся патроне, определяется погрешностью выполнения базирующейся поверхности самой детали, по которой устанавливается деталь.

Из рекомендаций справочной литературы [7] определяем погрешность базирования детали:

мм;

мм

  1.  Расчет норм времени на операцию сверление отверстий детали «муфта гайки» с применением универсально делительной головки.

Расчет производим согласно, рекомендациям [6] табл. 4.4., 4.5., 4.6. стр. 158-159).

Штучное время обработки:

Где:  - основное (технологическое) время;

- вспомогательное время;

- время обслуживания рабочего места;

- время перерывов в работе.

Рассчитаем штучное время для 035 операции – слесарно-сверлильной.

Основное время обработки – это сумма основного времени на каждом переходе,  = 2,16 мин. (переходов 4)

Вспомогательное время – это время на вспомогательные функции:

= 0,33 мин – время на установку и снятие заготовки (масса до 3-ех кг., с установкой в самоцентрирующийся трехкулачковый патрон).

= 0,05 мин – время на включение и выключение двигателя сверлильного станка, (повторяется 8 раз).

= 0,1 мин – время на включение подачи сверлильного станка, (подача включается один раз – далее не меняется).

= 0,13 мин – время на подвод режущего инструмента, (инструмент подводится 4 раза).

=0,25 мин – время зацентровки отверстия (норматив для сверлильных операций, центровка применяется 4 раза).

=0,35 мин – время на смену инструмента (смена спирального сверла на центровочное сверло, меняется 8 раз).

Следовательно, вспомогательное время на операции:

, мин.

Находим оперативное время:

Находим время обслуживания рабочего места:

Найдем время перерывов:

Найдем штучное время:

Таблица 8. Таблица нормирования операции

№ операции

, мин

мин

мин

мин

мин

мин

Фрезерная

2,16

5,15

7,31

0,3

0,37

7,98

при использовании различного вида технологического оборудования и применяемой технологической оснастки можно сделать вывод, что: наиболее экономически выгодной и производительной в зависимости показателей рассчитанных норм времени и точности обработки, является с именением технологической оснастки и оборудования с числовым программным управлением. Но применение данного оснащения в мелкосерийном производстве не выгодно (N=340 шт/год), т.к. стоимость станка VT-23 ЧПУ Поэтому, использование универсального станка  с технологической оснасткой, такой как кондуктор более приемлемо ввиду низкой стоимости оборудования и сравнительно высокой точности и качества обработки деталей.


 

А также другие работы, которые могут Вас заинтересовать

22532. Понятие о напряжениях и деформациях 80.5 KB
  а вектор полного напряжения б вектор нормального и касательного напряжений уменьшаются главный вектор и главный момент внутренних сил причем главный момент уменьшается в большей степени. Введенный таким образом вектор рn называется вектором напряжений в точке. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке. В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали п.
22533. Свойства тензора напряжений. Главные напряжения 95 KB
  Свойства тензора напряжений. Главные напряжения Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Отличные от нуля моменты создают компоненты верхняя грань и права грань: После сокращения на элемент объема dV=dxdydz получим Аналогично приравнивая нулю сумму моментов всех сил относительно осей Оу и Ог получим еще два соотношения Эти условия симметрии и тензора напряжений...
22534. Плоское напряженное состояние 98.5 KB
  Тензор напряжений в этом случае имеет вид Геометрическая иллюстрация представлена на рис. Инварианты тензора напряжений равны а характеристическое уравнение принимает вид Корни этого уравнения равны 1 Нумерация корней произведена для случая Рис. Позиция главных напряжений Произвольная площадка характеризуется углом на рис. Если продифференцировать соотношение 2 по и приравнять производную нулю то придем к уравнению 4 что доказывает экстремальность главных напряжений.
22535. Упругость и пластичность. Закон Гука 156 KB
  При высоких уровнях нагружения когда в теле возникают значительные деформации материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются а при полном снятии внешних нагрузок фиксируются остаточные деформации. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими. Твердые тела выполненные из различных материалов разрушаются при разной величине деформации. Соответствующие деформации обозначим через и причем эти деформации...
22536. Механические характеристики конструкционных материалов 110 KB
  ДИАГРАММЫ УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма размеры образца и методика проведения испытаний определяются соответствующими стандартами например ГОСТ 34643 81 ГОСТ 149773. Физический смысл коэффициента Е определяется как...
22537. Влияние различных факторов на механические характеристики материалов 54.5 KB
  Влияние процентного содержания углерода Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов как ползучесть и длительная прочность. Скорость релаксации напряжений возрастает при повышении температуры. Прочность углеродистых сталей с повышением температуры до 650 700oС снижается почти в десять раз.
22538. Основные понятия теории надежности конструкций 79.5 KB
  Условие прочности по существу есть условие обеспечения прочностной надежности. Например предельное напряжение входящее в условие прочности по своей природе является случайным. Если стечение обстоятельств приводящее к нарушению условия прочности редкое событие то приходим к вероятностной трактовке условия прочности с позиций теории надежности. Вместо условия прочности 1 записывается условие Р=Р 2 где Р заданное достаточно высокое значение вероятности которое называется нормативной вероятностью безотказной работы.
22539. Прочность и перемещения при центральном растяжении или сжатии 136 KB
  Напомним что под растяжением сжатием понимают такой вид деформации стержня при котором в его поперечном сечении возникает лишь один внутренний силовой фактор продольная сила Nz. Поскольку продольная сила численно равна сумме проекций приложенных к одной из отсеченных частей внешних сил на ось стержня для прямолинейного стержня она совпадает в каждом сечении с осью Oz то растяжение сжатие имеет место если все внешние силы действующие по одну сторону от данного поперечного сечения сводятся к равнодействующей направленной вдоль...
22540. Расчет статически неопределимых систем по допускаемым нагрузкам 116.5 KB
  Расчет статически неопределимых систем по допускаемым нагрузкам. Применение к статически определимым системам. Расчетная схема статически определимой стержневой системы Рассчитывая эту систему обычным путем найдем усилия N1 = N2 no формуле: из равновесия узла А. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений когда материал по всему сечению используется полностью.