3851

Абсолютна та відносна похибка та методи оцінювання похибок

Другое

Информатика, кибернетика и программирование

Чисельні методи в інформатиці: Методичні вказівки до виконання лабораторної роботи «Абсолютна та відносна похибка» для студентів базового напряму «Комп’ютерні науки» спеціальності «Інформаційні управляючі системи та технології»...

Украинкский

2015-01-17

127 KB

33 чел.

Чисельні методи в інформатиці: Методичні вказівки до виконання лабораторної роботи «Абсолютна та відносна похибка» для студентів базового напряму «Комп’ютерні науки» спеціальності «Інформаційні управляючі системи та технології» / Укл.: І.М.Дронюк.- Львів: Видавництво Національного університету «Львівська політехніка», 2009.-15 с.

Укладач     Дронюк І.М., канд.фіз.-мат. наук, доц.

Відповідальний за випуск  Шпак З.Я., канд. техн.наук, доц.

Рецензент     Цмоць І.Г., д-р техн. наук, проф.


Мета роботи
: вивчити поняття абсолютної та відносної похибки та методи їх оцінювання.

Порядок роботи:

  1.  Створити проект для виконання індивідуального завдання.
  2.  Оформити звіт для захисту лабораторної роботи за зразком

назва роботи

мета роботи

порядок роботи

короткі теоретичні відомості

алгоритм розв’язку задачі

тексти відповідних модулів проекту

аналіз отриманих результатів та висновки

Короткі теоретичні відомості

Теорема. Якщо додатне наближене число а має п точних десяткових знаків, то відносна похибка δ цього числа задовольняє умову

δ  ≤ ,

де атперша  значуща цифра числа а .

Доведення. Нехай  а = αm ·10 m +αm - 1 ·10m - 1 + ... + αmn +1 ·10mn + 1

є наближеним значенням точного числа А з n точними знаками. Тоді, згідно з означенням числа точних знаків наближеного числа, одержуємо

= | А  а |≤ · 10mn + 1.

Звідси

- · 10mn + 1 ≤  А  а · 10mn + 1 .

Тому

А а - · 10mn + 1 ≥ αm ·10 m - · 10mn + 1

або

                                       А · 10m.   

Права частина отриманої нерівності досягає найменшого значення при п = 1, тому

А · 10m· 10m (2аm - 1). 

Оскільки 2аm - 1 = ат + (ат 1 ) ≥ аm , то

А   аm · 10m.

Тепер, згідно з означенням,

δ = ,

або                                                               

δ ≤ .

Наслідок 1. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками можна прийняти

δa =

де аm - перша значуща цифра числа а .

Наслідок 2. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками при п  2 практично можна прийняти   

δa = .

                                              

Справді, якщо   п>2, то числом    у нерівності  можна знехтувати. Тоді

А · 10m ·2аm = аm · 10m.

Тому

δ = ,

Приклад 1. Яка гранична відносна похибка наближеного числa а = 3,14 , що замінює точне число А = π?

Оскільки п = 3 і ат = 3 , то на підставі наслідку 2

δa =% .

Приклад 2. Зі скількома точними десятковими знаками треба взяти , щоб відносна похибка була не більша за 0,1% ?

Оскільки ат = 4, δ ≤ 0,001, то на підставі наслідку 1 має виконуватися нерівність:

Звідси 10n – 1 ≥ 250 або п ≥ 4 .

Для визначення кількості точних знаків наближеного числа а , якщо відома його відносна похибка δ , можемо скористатися наближеною формулою

δ =

де ∆ - абсолютна похибка наближеного числа а . Із цієї формули одержуємо, що ∆ = δ |a|.  Маючи ∆, на підставі означення легко знайти кількість точних десяткових знаків наближеного числа а .

Приклад 3. Число   а = 7654   має   відносну   похибку   δ = 0,01. Скільки в ньому точних цифр?

Оскільки

∆ = δ a = 76,54 < · 103

то число а має лише одну точну цифру.

Похибки арифметичних операцій

1. Похибкa суми.

Теорема 1. Абсолютна похибка алгебраїчної суми декількох наближених чисел не перевищує суми абсолютних похибок цих чисел.

Доведення. Нехай x1, x2, …, хп – задані  наближені числа. Розглянемо їх алгебраїчну суму

и = ± х1 ± х2 ± ... ± хп .

Тоді похибка цієї алгебраїчної суми Дм буде складатися з алгебраїчної суми похибок доданків, тобто

и = ± х1 ± х2 ± ... ± хп .

Звідси

|∆и||∆х1| + |∆х2| + ... +|∆хп| .

Наслідок. За граничну абсолютну похибку алгебраїчної суми декількох наближених чисел можна прийняти суму граничних абсолютних похибок цих чисел, тобто

и = х1 + х2 + ... + хп .

Теорема 2. Гранична відносна похибка суми декількох наближених чисел одного й того ж знака не перевищує найбільшу з граничних відносних похибок цих чисел.

Доведення. Нехай

и = + х1 + х2 + ... + хп ,

де для визначеності вважатимемо, що xi > 0 (i = 1, 2,..., п ). Позначимо

через Аi  (і = 1, 2,..., п ) точні значення доданків xi , а через А – їх  суму, тобто А = А1 +    + А2 + ... + Ап . Тоді

δu=

Оскільки , то = Аі . Тому

.

Нехай

max = .

        1 ≤ i n

Тоді                        

тобто        = max 

      1 ≤ i n 

2. Похибкa різниці. Розглянемо різницю двох наближених чисел х1 та х2:

и = х12 .      

 Тоді, на підставі наслідку з теореми 1,

и = х1 + х2 , δu=

де А точне  значення різниці х12. 3 останньої формули випливає, що для близьких чисел х1 та х2 гранична відносна похибка буде досить велика. Тому в обчислювальних алгоритмах бажано уникати віднімання близьких чисел.

Зауваження. При подальшому розгляді похибок арифметичних операцій, а також при розгляді похибок функцій припускатимемо, що похибки значно менші за абсолютною величиною від самих наближених величин, тож ними можна знехтувати в сумах, котрі містять одночасно наближену величину і її похибку як доданки; і завжди можна обмежитися членами, лінійними відносно похибок, нехтуючи членами більш високого порядку. Це означає, що наступні питання, пов'язані з похибками, розглядатимемо дещо грубо, проте елементарно. Адже строгий підхід під час розгляду цих питань не дає бажаних наочних результатів.

3. Похибкa добутку. Нехай

Аіі+∆хі   (і = 1,2,...,n),

де для простоти вважатимемо, що хі > 0   (і -1, 2,..., п ), А = А1 А2  Аn , u = х1х2 хn . Тоді

А = (х1 + ∆ х1 ) (х2 + х2)  ... (хп + ∆хп) =

= х1х2  хn + х2х3  хn х1 + х1 х3 хn х2 + ... +

+ х1х2  хn-1  + ∆хп + ... + ∆x1∆x2…∆xn .

Враховуючи зауваження, можемо прийняти, що

А = u +x1 x2хп + ∆х1+ х1 х3 хп + ∆х2 +…+ x1 x2хn-1  + ∆хп .

Звідси

| ∆u | = | А  u | ≤ x2x3 … xn | ∆x1| + х1 х3… xn| ∆x2| +…+ 

                                                             + x1 x2хn-1  + ∆хп

Зокрема, якщо п = 2 , то

| ∆u | ≤ x2| ∆x1| + x1| ∆x2| .

За граничну абсолютну похибку добутку можна взяти

u = x2x3 … xnx1+ х1 х3… xnx2 +…+ x1 x2хn-1  + ∆хп  .

Розділивши нерівність  на u, одержимо

Враховуючи зауваження, замінюємо величину      на відносну

похибку  множника хi , а    – на відносну похибку

добутку . Отримаємо таку нерівність:

δ ≤ δ1 + δ2 + … δn .

За граничну відносну похибку добутку можемо прийняти

.

4. Похибки частки. Нехай  A1 = х1 + ∆ х1, A2 = х2 + ∆ х2 , де для простоти            x1 > 0, x2 > 0,,  . Тоді

i

.

Звідси                                 

,

aбo

.

Розділивши нерівність на u, одержимо

Врахувавши зауваження, замінимо      на відносну похибку 

діленого,      - на відносну похибку   дільника,    - на відносну похибку  частки. Отримаємо

.

За граничну відносну похибку частки можна прийняти

.

5. Похибкa степеня. Нехай  А = (х + х)т , и = хт , де  т натуральне число,       х > 0. Використовуючи похибки добутку, одержуємо

|∆u| < mxm - 1|∆x|,  δ ≤ 1,

де  δ – відносна похибка степеня; δ1 – відносна похибка аргументу х. Тому за граничні абсолютну та відносну похибки степеня можемо прийняти

u= mxm - 1x, δu= x .

Із наведених похибок арифметичних операцій випливає, що операції додавання та віднімання (при великій різниці між числами) не погіршують точності результату порівняно з точністю алгебраїчних доданків, а операції множення, ділення і піднесення до степеня суттєво погіршують точність результату.

Контрольні запитання

1

Заокруглюючи число до трьох значущих цифр, визначити абсолютну та відносну похибки наближеного числа  3,9287

2

Визначити абсолютну похибку наближеного числа за його відносною похибкою  A=57,23 =1%

3

Визначити кількість точних десяткових знаків у числі, якщо відома його абсолютна похибка

X=13,04342; x=0,1

4

Визначити кількість точних десяткових знаків у числі, якщо відома його абсолютна похибка

X=13,04342; =1%

5

Знайти виразу z для наближених чисел і визначити абсолютну та відносну похибки, якщо відомо, що три знаки точні     z=1,2344-1,2312

6

Обчислити значення функції u та оцінити абсолютну та відносну похибки результату, якщо

U=x*y-z, x=4,5; y=3,2;z=1,3; x=0,1; y=0,1; z=0,1

7

Обчислити значення функції z, вважаючи точними всі знаки наближених чисел x ,y. Обчислити абсолютну та відносну похибки результату

Z=ln(x+cos(y)), x=1, y=1

Завдання

  

Оцінити абсолютну та відносну похибку обчислення величини F при умові

А) заданих точних значеннях величин аргументів x1 , x2 ,  x3

Б) заданих  значеннях величин аргументів x1 , x2 ,  x3  з похибкою = N*10-3, де N–номер варіанта

ВАРІАНТ 1

 

 

 F = 2x12 + 3x22 + x32 + 4x1x2 – 3x3 + cos(x2 - x1 )

ВАРІАНТ 2

 

 

 F = 5x12 + 3x22 + 2x32 - 4x2x3 - 2x1   cos(x2 * x3 );

ВАРІАНТ 3

       

 

F = 3x12 + 2x22 + 4x32 + 3x1x2 - 2x2 +sin( x1 – x3 *x2 );

ВАРІАНТ 4

       

 

 F = 4x12 + 5x22 + 3x32 - 4x1x2 - 2x1 -  sin(x1 / x2 );

ВАРІАНТ 5

 

 F = 6x12 + 4x22 + 5x32 + 5x1x3 - 3x2 + ln(3* x3 – x2 );

ВАРІАНТ 6

       

 

 F = 3x12 + 2x22 + 4x32 + 5x1x2 – x3 +exp( 8* x2 – x1 );

ВАРІАНТ 7

       

 

 F = 5x12 + 4x22 + 3x32 - 5x2x3 - 3x1 – sec(18* x2 – x3 );

ВАРІАНТ 8

       

 

 F = 4x12 + 3x22 + 5x32 + 4x1x3 - 3x2 + 11cosec(x1 – x3 );

ВАРІАНТ 9

       

 

 F = 5x12 + 6x22 + 4x32 - 5x1x2 - 3x1 +ln( 21 x1 * x2 );

ВАРІАНТ 10

       

 

 F = 7x12 + 5x22 + 6x32 + 6x1x3 - 4x2 – 5exp( x3 * x2 );

ВАРІАНТ 11

       

 

 F = 4x12 + 5x22 + 5x32 + 2x1x2 - 3x3 + 14tg( x2 – x1 );

 

ВАРІАНТ 12

       

 

 F = 8x12 + 6x22 + 4x32 - 6x2x3 - 4x1 + 20ctg( x2 – x3 );

ВАРІАНТ 13

       

 

 F = 6x12 + 5x22 + 7x32 + 6x1x2 - 5x2 - 21 x1 * x2 * x3;

ВАРІАНТ 14

       

 

 F = 7x12 + 7x22 + 5x32 - 6x1x2 - 4x1 + 24sqrt( x1x2 );

ВАРІАНТ 15

       

 

 F = 8x12 + 6x22 + 7x32 + 7x1x3 - 5x2 + 8sqrt( x3 * x2 );

ВАРІАНТ 16

       

 

 F = 7x12 + 3x22 + 2x32 + 4x1x2 - 4x3 + 16( x2x1 )1/3;

ВАРІАНТ 17

       

 

 F = 9x12 + 6x22 + 5x32 - 7x2x3 - 5x1 - 24 (x2 * x3 )1/3 ;

ВАРІАНТ 18

       

 

 F = 7x12 + 6x22 + 8x32 + 7x1x3 - 6x2 + 23arccos(x1x3 );

ВАРІАНТ 19

       

 

 F = 10x12 + 8x22 + 6x32 - 7x1x2 - 5x1 + 20arcsin( x1 – x2 );

ВАРІАНТ 20

       

 

 F = 11x12 + 9x22 + 9x32 + 9x1x3 - 7x2 – 10arctg(x3 – x2 );

Література

  1.  Фельдман Л., Петренко А., Дмитрієва О. Чисельні методи в інформатиці: Підручник для вузів / За заг. ред. М.З. Згуровського. – К.: Видав. група ВНV, 2006. – 475с.
  2.  Цегелик Г. Чисельнi методи: Пiдручник / Цегелик,Григорiй Григорович. - Львiв, 2004. - 406с.
  3.  Коссак О., Тумашова О., Коссак О. Методи наближених обчислень:. Навч. посіб. — Л.: БаК, 2003 . — 168 с.


 

А также другие работы, которые могут Вас заинтересовать

30220. Клопы (HEMIPTERA) лесопарковых территорий г. Бийска 4 MB
  Целенаправленных исследований по изучению фауны и экологии Полужесткокрылых в городе Бийске не проводилось. В литературе имеются отрывочные данные, которые содержат лишь краткие сведения о распространении видов. Основной целью данной работы является: изучение фауны и экологии отряда Hemiptera городских скверов Бийска и по литературным данным морфологии, физиологии, эмбриологии его представителей.
30221. Применение программы 3D Studio MAX для создания трехмерной модели компьютерного монитора 1.13 MB
  Целью данной работы является рассмотрение программы 3D графики: 3D Studio MAX рассмотрение ее возможностей применение в различных сферах а так же рассмотрение практического применения программы 3D Studio MAX для создания трехмерной модели компьютерного монитора.2 Изучение основ 3D моделирования в программе Autodesk 3ds Max 1.3 Элементы интерфейса 3ds Max. Способы моделирования трехмерных объектов в 3ds Max 2.
30222. Технология изготовления журнального столика на деревообрабатывающих станках. Технология наладки четырехстороннего продольно фрезерного станка 1.46 MB
  В лесной промышленности более 22 тысяч организаций, в том числе около 3 тысяч крупных и средних, из которых свыше 95 процентов акционированы. В отрасли занято свыше миллиона человек (7 процентов от численности работающих в промышленности). Отрасль располагает 3 процентами основных фондов промышленности.
30223. РАЗВИТИЕ СИСТЕМЫ ПРИДОРОЖНОГО СЕРВИСА КАК ЭЛЕМЕНТА ТУРИСТСКО-РЕКРЕАЦИОННОГО КОМПЛЕКСА РЕГИОНА (НА ПРИМЕРЕ АЛТАЙСКОГО КРАЯ) 297 KB
  Бесспорно, что для развития сферы отдыха и туризма необходима развитая инфраструктура и дорожная сеть. Дороги и придорожный сервис являются обязательным условием успешного развития туризма региона, а развитие сети придорожного сервиса является одним из условий, определяющих качество экономических, торговых и культурных связей между регионами Российской Федерации, важным фактором, влияющим на устойчивое развитие региональной экономики.
30224. Изготовление модели повседневного платья 120 KB
  Формы костюма всегда развиваются параллельно с развитием общего стиля в искусстве и архитектуре определённой исторической эпохи, переживая вместе с ним все этапы эволюции. Современная мода допускает некоторые вольности в нашем костюме, подталкивает нас к тому, чтобы раскрепоститься, дать волю своему воображению и поэкспериментировать.
30225. Электроснабжение цеха каустизации и регенерации извести филиала ООО «Илимтехносервис» 2.04 MB
  Описание технологического процесса каустизации щелока Зеленый щелок из растворителя плава котельного цеха № 2 ТЭС с температурой не менее 85 ОС массовой концентрацией общей щелочи 112122 г дм3 в единицах Na2O сульфидностью не менее 28 подается в однокамерный осветлитель зеленого щелока № 5 № 6 поз. Осветленный зеленый щелок из осветлителя сливается в бак хранения зеленого щелока поз. 306140 откуда центробежными насосами поз. S72; S73 S74; S75 подается на гасители классификаторы поз.
30226. Технология приготовления и правила подачи салатов из варёных овощей 136 KB
  Классификация мяса Мясо классифицируют по виду убойных животных по полу возрасту по термическому состоянию упитанности и сортам . По качеству его делят на высший 1 2 3й сорта. В зависимости от сорта цвет пшена светлоили яркожелтый консистенция от мучнистой до стекловидной. Ядрицу обыкновенную и быстроразвариваюшуюся делят по качеству на 1 2 3й сорта.
30227. Информатизация общества: социальные условия, предпосылки и последствия 46 KB
  Социальные условия информатизации это реальная обстановка в которой происходит процесс информатизации. Социальные последствия информатизации реальные и прогнозируемые изменения в обществе происходящие под влиянием информатизации. Рассмотрение в этом смысле условий и предпосылок информатизации это анализ реального и необходимого состояния всех сфер жизни общества с точки зрения их готовности воспринять и развивать информатизацию; “социальное†в узком смысле слова.
30228. Формирование информационной среды общества 33 KB
  Формирование информационной среды общества Современное общество не может существовать в условиях сенсорного голода для его развития и саморганизации совершенно необходимо всеобъемлющее информационное поле. Например 1012 это требующий кардинальных решений порог уровня безработицы в обществе 14 это коэффициент характеризующий катастрофическое соотношение доходов 10 самых богатых и 10 самых бедных членов общества. Наиболее важным понятием которое необходимо определить при изучении информационной среды общества является понятие...