3851

Абсолютна та відносна похибка та методи оцінювання похибок

Другое

Информатика, кибернетика и программирование

Чисельні методи в інформатиці: Методичні вказівки до виконання лабораторної роботи «Абсолютна та відносна похибка» для студентів базового напряму «Комп’ютерні науки» спеціальності «Інформаційні управляючі системи та технології»...

Украинкский

2015-01-17

127 KB

34 чел.

Чисельні методи в інформатиці: Методичні вказівки до виконання лабораторної роботи «Абсолютна та відносна похибка» для студентів базового напряму «Комп’ютерні науки» спеціальності «Інформаційні управляючі системи та технології» / Укл.: І.М.Дронюк.- Львів: Видавництво Національного університету «Львівська політехніка», 2009.-15 с.

Укладач     Дронюк І.М., канд.фіз.-мат. наук, доц.

Відповідальний за випуск  Шпак З.Я., канд. техн.наук, доц.

Рецензент     Цмоць І.Г., д-р техн. наук, проф.


Мета роботи
: вивчити поняття абсолютної та відносної похибки та методи їх оцінювання.

Порядок роботи:

  1.  Створити проект для виконання індивідуального завдання.
  2.  Оформити звіт для захисту лабораторної роботи за зразком

назва роботи

мета роботи

порядок роботи

короткі теоретичні відомості

алгоритм розв’язку задачі

тексти відповідних модулів проекту

аналіз отриманих результатів та висновки

Короткі теоретичні відомості

Теорема. Якщо додатне наближене число а має п точних десяткових знаків, то відносна похибка δ цього числа задовольняє умову

δ  ≤ ,

де атперша  значуща цифра числа а .

Доведення. Нехай  а = αm ·10 m +αm - 1 ·10m - 1 + ... + αmn +1 ·10mn + 1

є наближеним значенням точного числа А з n точними знаками. Тоді, згідно з означенням числа точних знаків наближеного числа, одержуємо

= | А  а |≤ · 10mn + 1.

Звідси

- · 10mn + 1 ≤  А  а · 10mn + 1 .

Тому

А а - · 10mn + 1 ≥ αm ·10 m - · 10mn + 1

або

                                       А · 10m.   

Права частина отриманої нерівності досягає найменшого значення при п = 1, тому

А · 10m· 10m (2аm - 1). 

Оскільки 2аm - 1 = ат + (ат 1 ) ≥ аm , то

А   аm · 10m.

Тепер, згідно з означенням,

δ = ,

або                                                               

δ ≤ .

Наслідок 1. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками можна прийняти

δa =

де аm - перша значуща цифра числа а .

Наслідок 2. За граничну відносну похибку наближеного додатного числа а з п точними десятковими знаками при п  2 практично можна прийняти   

δa = .

                                              

Справді, якщо   п>2, то числом    у нерівності  можна знехтувати. Тоді

А · 10m ·2аm = аm · 10m.

Тому

δ = ,

Приклад 1. Яка гранична відносна похибка наближеного числa а = 3,14 , що замінює точне число А = π?

Оскільки п = 3 і ат = 3 , то на підставі наслідку 2

δa =% .

Приклад 2. Зі скількома точними десятковими знаками треба взяти , щоб відносна похибка була не більша за 0,1% ?

Оскільки ат = 4, δ ≤ 0,001, то на підставі наслідку 1 має виконуватися нерівність:

Звідси 10n – 1 ≥ 250 або п ≥ 4 .

Для визначення кількості точних знаків наближеного числа а , якщо відома його відносна похибка δ , можемо скористатися наближеною формулою

δ =

де ∆ - абсолютна похибка наближеного числа а . Із цієї формули одержуємо, що ∆ = δ |a|.  Маючи ∆, на підставі означення легко знайти кількість точних десяткових знаків наближеного числа а .

Приклад 3. Число   а = 7654   має   відносну   похибку   δ = 0,01. Скільки в ньому точних цифр?

Оскільки

∆ = δ a = 76,54 < · 103

то число а має лише одну точну цифру.

Похибки арифметичних операцій

1. Похибкa суми.

Теорема 1. Абсолютна похибка алгебраїчної суми декількох наближених чисел не перевищує суми абсолютних похибок цих чисел.

Доведення. Нехай x1, x2, …, хп – задані  наближені числа. Розглянемо їх алгебраїчну суму

и = ± х1 ± х2 ± ... ± хп .

Тоді похибка цієї алгебраїчної суми Дм буде складатися з алгебраїчної суми похибок доданків, тобто

и = ± х1 ± х2 ± ... ± хп .

Звідси

|∆и||∆х1| + |∆х2| + ... +|∆хп| .

Наслідок. За граничну абсолютну похибку алгебраїчної суми декількох наближених чисел можна прийняти суму граничних абсолютних похибок цих чисел, тобто

и = х1 + х2 + ... + хп .

Теорема 2. Гранична відносна похибка суми декількох наближених чисел одного й того ж знака не перевищує найбільшу з граничних відносних похибок цих чисел.

Доведення. Нехай

и = + х1 + х2 + ... + хп ,

де для визначеності вважатимемо, що xi > 0 (i = 1, 2,..., п ). Позначимо

через Аi  (і = 1, 2,..., п ) точні значення доданків xi , а через А – їх  суму, тобто А = А1 +    + А2 + ... + Ап . Тоді

δu=

Оскільки , то = Аі . Тому

.

Нехай

max = .

        1 ≤ i n

Тоді                        

тобто        = max 

      1 ≤ i n 

2. Похибкa різниці. Розглянемо різницю двох наближених чисел х1 та х2:

и = х12 .      

 Тоді, на підставі наслідку з теореми 1,

и = х1 + х2 , δu=

де А точне  значення різниці х12. 3 останньої формули випливає, що для близьких чисел х1 та х2 гранична відносна похибка буде досить велика. Тому в обчислювальних алгоритмах бажано уникати віднімання близьких чисел.

Зауваження. При подальшому розгляді похибок арифметичних операцій, а також при розгляді похибок функцій припускатимемо, що похибки значно менші за абсолютною величиною від самих наближених величин, тож ними можна знехтувати в сумах, котрі містять одночасно наближену величину і її похибку як доданки; і завжди можна обмежитися членами, лінійними відносно похибок, нехтуючи членами більш високого порядку. Це означає, що наступні питання, пов'язані з похибками, розглядатимемо дещо грубо, проте елементарно. Адже строгий підхід під час розгляду цих питань не дає бажаних наочних результатів.

3. Похибкa добутку. Нехай

Аіі+∆хі   (і = 1,2,...,n),

де для простоти вважатимемо, що хі > 0   (і -1, 2,..., п ), А = А1 А2  Аn , u = х1х2 хn . Тоді

А = (х1 + ∆ х1 ) (х2 + х2)  ... (хп + ∆хп) =

= х1х2  хn + х2х3  хn х1 + х1 х3 хn х2 + ... +

+ х1х2  хn-1  + ∆хп + ... + ∆x1∆x2…∆xn .

Враховуючи зауваження, можемо прийняти, що

А = u +x1 x2хп + ∆х1+ х1 х3 хп + ∆х2 +…+ x1 x2хn-1  + ∆хп .

Звідси

| ∆u | = | А  u | ≤ x2x3 … xn | ∆x1| + х1 х3… xn| ∆x2| +…+ 

                                                             + x1 x2хn-1  + ∆хп

Зокрема, якщо п = 2 , то

| ∆u | ≤ x2| ∆x1| + x1| ∆x2| .

За граничну абсолютну похибку добутку можна взяти

u = x2x3 … xnx1+ х1 х3… xnx2 +…+ x1 x2хn-1  + ∆хп  .

Розділивши нерівність  на u, одержимо

Враховуючи зауваження, замінюємо величину      на відносну

похибку  множника хi , а    – на відносну похибку

добутку . Отримаємо таку нерівність:

δ ≤ δ1 + δ2 + … δn .

За граничну відносну похибку добутку можемо прийняти

.

4. Похибки частки. Нехай  A1 = х1 + ∆ х1, A2 = х2 + ∆ х2 , де для простоти            x1 > 0, x2 > 0,,  . Тоді

i

.

Звідси                                 

,

aбo

.

Розділивши нерівність на u, одержимо

Врахувавши зауваження, замінимо      на відносну похибку 

діленого,      - на відносну похибку   дільника,    - на відносну похибку  частки. Отримаємо

.

За граничну відносну похибку частки можна прийняти

.

5. Похибкa степеня. Нехай  А = (х + х)т , и = хт , де  т натуральне число,       х > 0. Використовуючи похибки добутку, одержуємо

|∆u| < mxm - 1|∆x|,  δ ≤ 1,

де  δ – відносна похибка степеня; δ1 – відносна похибка аргументу х. Тому за граничні абсолютну та відносну похибки степеня можемо прийняти

u= mxm - 1x, δu= x .

Із наведених похибок арифметичних операцій випливає, що операції додавання та віднімання (при великій різниці між числами) не погіршують точності результату порівняно з точністю алгебраїчних доданків, а операції множення, ділення і піднесення до степеня суттєво погіршують точність результату.

Контрольні запитання

1

Заокруглюючи число до трьох значущих цифр, визначити абсолютну та відносну похибки наближеного числа  3,9287

2

Визначити абсолютну похибку наближеного числа за його відносною похибкою  A=57,23 =1%

3

Визначити кількість точних десяткових знаків у числі, якщо відома його абсолютна похибка

X=13,04342; x=0,1

4

Визначити кількість точних десяткових знаків у числі, якщо відома його абсолютна похибка

X=13,04342; =1%

5

Знайти виразу z для наближених чисел і визначити абсолютну та відносну похибки, якщо відомо, що три знаки точні     z=1,2344-1,2312

6

Обчислити значення функції u та оцінити абсолютну та відносну похибки результату, якщо

U=x*y-z, x=4,5; y=3,2;z=1,3; x=0,1; y=0,1; z=0,1

7

Обчислити значення функції z, вважаючи точними всі знаки наближених чисел x ,y. Обчислити абсолютну та відносну похибки результату

Z=ln(x+cos(y)), x=1, y=1

Завдання

  

Оцінити абсолютну та відносну похибку обчислення величини F при умові

А) заданих точних значеннях величин аргументів x1 , x2 ,  x3

Б) заданих  значеннях величин аргументів x1 , x2 ,  x3  з похибкою = N*10-3, де N–номер варіанта

ВАРІАНТ 1

 

 

 F = 2x12 + 3x22 + x32 + 4x1x2 – 3x3 + cos(x2 - x1 )

ВАРІАНТ 2

 

 

 F = 5x12 + 3x22 + 2x32 - 4x2x3 - 2x1   cos(x2 * x3 );

ВАРІАНТ 3

       

 

F = 3x12 + 2x22 + 4x32 + 3x1x2 - 2x2 +sin( x1 – x3 *x2 );

ВАРІАНТ 4

       

 

 F = 4x12 + 5x22 + 3x32 - 4x1x2 - 2x1 -  sin(x1 / x2 );

ВАРІАНТ 5

 

 F = 6x12 + 4x22 + 5x32 + 5x1x3 - 3x2 + ln(3* x3 – x2 );

ВАРІАНТ 6

       

 

 F = 3x12 + 2x22 + 4x32 + 5x1x2 – x3 +exp( 8* x2 – x1 );

ВАРІАНТ 7

       

 

 F = 5x12 + 4x22 + 3x32 - 5x2x3 - 3x1 – sec(18* x2 – x3 );

ВАРІАНТ 8

       

 

 F = 4x12 + 3x22 + 5x32 + 4x1x3 - 3x2 + 11cosec(x1 – x3 );

ВАРІАНТ 9

       

 

 F = 5x12 + 6x22 + 4x32 - 5x1x2 - 3x1 +ln( 21 x1 * x2 );

ВАРІАНТ 10

       

 

 F = 7x12 + 5x22 + 6x32 + 6x1x3 - 4x2 – 5exp( x3 * x2 );

ВАРІАНТ 11

       

 

 F = 4x12 + 5x22 + 5x32 + 2x1x2 - 3x3 + 14tg( x2 – x1 );

 

ВАРІАНТ 12

       

 

 F = 8x12 + 6x22 + 4x32 - 6x2x3 - 4x1 + 20ctg( x2 – x3 );

ВАРІАНТ 13

       

 

 F = 6x12 + 5x22 + 7x32 + 6x1x2 - 5x2 - 21 x1 * x2 * x3;

ВАРІАНТ 14

       

 

 F = 7x12 + 7x22 + 5x32 - 6x1x2 - 4x1 + 24sqrt( x1x2 );

ВАРІАНТ 15

       

 

 F = 8x12 + 6x22 + 7x32 + 7x1x3 - 5x2 + 8sqrt( x3 * x2 );

ВАРІАНТ 16

       

 

 F = 7x12 + 3x22 + 2x32 + 4x1x2 - 4x3 + 16( x2x1 )1/3;

ВАРІАНТ 17

       

 

 F = 9x12 + 6x22 + 5x32 - 7x2x3 - 5x1 - 24 (x2 * x3 )1/3 ;

ВАРІАНТ 18

       

 

 F = 7x12 + 6x22 + 8x32 + 7x1x3 - 6x2 + 23arccos(x1x3 );

ВАРІАНТ 19

       

 

 F = 10x12 + 8x22 + 6x32 - 7x1x2 - 5x1 + 20arcsin( x1 – x2 );

ВАРІАНТ 20

       

 

 F = 11x12 + 9x22 + 9x32 + 9x1x3 - 7x2 – 10arctg(x3 – x2 );

Література

  1.  Фельдман Л., Петренко А., Дмитрієва О. Чисельні методи в інформатиці: Підручник для вузів / За заг. ред. М.З. Згуровського. – К.: Видав. група ВНV, 2006. – 475с.
  2.  Цегелик Г. Чисельнi методи: Пiдручник / Цегелик,Григорiй Григорович. - Львiв, 2004. - 406с.
  3.  Коссак О., Тумашова О., Коссак О. Методи наближених обчислень:. Навч. посіб. — Л.: БаК, 2003 . — 168 с.


 

А также другие работы, которые могут Вас заинтересовать

39642. РАЗРАБОТКА ДИСТАНЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ УЧЕБНЫМ РОБОТОМ 2.7 MB
  Робототехника – прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства. Робототехника опирается на такие дисциплины, как электроника, механика, информатика
39643. Преобразователь звуковой частоты 251 KB
  Мастер производственного участка обеспечивает работника нужным инвентарем и обеспечивает безопасные условия труда. Из этого следует что все ресурсы потребляются в производстве тремя способами: пропорционально произведенной продукции сырье энергия заработная плата при сдельной системе оплаты труда и т.; равномерно в течение времени амортизационные отчисления заработная плата при повременной системе оплаты труда и т.; ситуационно например по мере износа оборудования материалы и заработная плата ремонтного персонала при...
39644. СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ 425.42 KB
  ЛАБОРАТОРНАЯ РАБОТА №1 €œИзучение и исследование свойств самолета как объекта управления в продольном движении€. Цель работы Целью работы является изучение и исследование свойств самолета как объекта управления в продольном движении методом математического моделирования а также изучение характера возмущенного движения самолета на управляющие и возмущающие воздействия. Экспериментальное исследование свойств самолета в продольном движении. Исходным материалом для подготовки к лабораторной работе являются значения коэффициентов...
39646. Разработка системы моделирования движения «свободного самолета», с целью внедрения в учебный процесс программы, созданной на основе полученных результатов 6.79 MB
  Методика определения передаточных функций самолета 24 1. Техническое задание на разработку системы моделирования движения свободного самолета 26 2. Построение переходных процессов модели полного продольного движения самолета по приращению управляющих воздействий а так же по приращению импульсных управляющих воздействий. Построение переходных процессов модели короткопериодического движения самолета по приращению управляющих воздействий 36 2.
39648. Анализ деятельности Воложинского РАЙПО 93.71 KB
  16 Характеристика плана производства и реализации продукции на предприятии18 Характеристика плана по труду и заработной плате.23 Планирование себестоимости продукции. Для хранения товаров и продукции имеются 7 складов общей площадью 7133 м. Предметом деятельности являются: организация оптовой и розничной торговли общественного питания; закупка у граждан в том числе индивидуальных предпринимателей и юридических лиц сельскохозяйственных продукции и сырья изделий и продукции личных подсобных хозяйств...
39649. Себестоимость продукции и резервы её снижения 131.5 KB
  Себестоимость продукции и резервы её снижения. Получение наибольшего эффекта с наименьшими затратами экономия трудовых материальных и финансовых ресурсов зависят от того как решает предприятие вопросы снижения себестоимости продукции. Общественные издержки производства это совокупность живого и овеществленного труда находящая выражение в стоимости продукции. Издержки предприятия состоят из всей суммы расходов предприятия на производство продукции и ее реализацию.
39650. Защита фирменного наименования и коммерческого обозначения 205.5 KB
  Теоретические основы охраны фирменного наименования и коммерческого обозначения.5 Понятие сущность и принципы фирменного наименования. Защита фирменного наименования и коммерческого обозначения. Понятие и виды способов защиты фирменного наименования и коммерческого обозначения.