3856

Розв’язування задачі Коші методом Рунге-Кутта

Лабораторная работа

Информатика, кибернетика и программирование

Розв’язування задачі Кошіметодом Рунге-Кутта Мета роботи: вивчити і засвоїти постановку та методи розв’язування задачі Коші. Навчитися досліджувати розв’язок , використовуючи метод Рунге-Кутта. Короткі теоретичні відомості Тільк...

Украинкский

2012-11-09

163 KB

60 чел.

Розв’язування задачі Коші методом Рунге-Кутта

Мета роботи: вивчити і засвоїти постановку та методи розв’язування задачі Коші. Навчитися досліджувати розв’язок , використовуючи метод Рунге-Кутта.

Короткі теоретичні відомості

Тільки невелика кількість задач Коші, iнтегровних у явному виглядi, зустрічаються серед задач, якi потрiбно розв’язувати. Тому для розв’язування задач Коші широко використовують чисельні методи з їх реалізацією на комп’ютерах. При цьому особливо важливими є вибір потрібного методу і його програмної реалізації, а також підготування всіх даних, необхідних для роботи комп’ютерної програми.

1.Формулювання задачi.

Нехай на вiдрiзку потрiбно знайти розв’язок диференцiйного рiвняння

      (1)

який задовольняє таку умову

      (2)

Задачу (1)-(2) називають задачею Кошi для звичайногодиференцiйного рівняння першого порядку.

Будемо припускати, що функцiя f(х,у) неперервна та задовольняє умову Лiпшиця за у, тобто виконується

   (3)

де L– деяка додатна стала. В цьому випадку задача Кошi має єдиний розв’язок на промiжку

2. Метод Ейлера.

Розiб’ємо проміжок [а, b], на якому шукаємо розв’язок, на рiвномiрнi вiдрізки причому

Розрахункова формула методу Ейлера має вигляд

  (4)

де .У випадку рівномiрного розбиття вiдрізка [а, b] точками отримасмо

3. Методи Рунге-Кутта.

На практиці для розв’язування задачi Коші найчастiше використовують методи Рунге-Кутта. Цими методами можна розв’язати задачу Кошi для звичайного диференцiйного рiвняння першого порядку, для диференцiйних рiвнянь вищих порядків, системи диференцiйних рiвнянь першого порядку.

Перевага методiв Рунге-Кутта полягає в тому, що обчислювальні алгоритми є однорiдними, тобто не змiнюються при переходi від однiєї точки до iншої, а крок змiнюється вiдповiдно до потреби точностi обчислень, без ускладнення обчислювального алгоритму.

Методи Рунге-Кутта мають високу точнiсть, причому обчислення можна проводити із змінним кроком: неважко эменшити крок там, де функцiя швидко змiнюється, i збiльшити в протилежному випадку.

Недоліком методів Рунге-Кутта є те, що для відшукання наближеного розв’язку в точцi заданого вiдрiзку необхiдно виконати декілька обчислень значень функцій.

Наведемо рекурентні формули методу Рунге-Кутта рiзних порядкiв точностi.

Формули методу Рунге-Кутта другого порядку:

4. Оцiнювання похибки наближеного розв’язку задачі Кошi.

Для методiв Ейлера та його модифiкацiй, а також методів Рунге-Кутта i Адамса застосовують апріорні оцiнки похибки наближеного розв’язку задачi Кошi (1)-(2) . Однак цi оцiнки здебiльшого значно завищені. Тому їхнє значення не стiльки практичне, скiльки теоретичне, бо з них безпосередньо випливає висновок про збiжність цих методiв. Крім того, апрiорнi оцiнки мiстять у собi ряд сталих, для вiдшукання яких часто треба виконувати досить складні обчислення.

Тому, щоб оцiнити похибку наближеного розв’язку задачi (1) - (2), намагаються використати iнформацiю, яку дiстають в процесі чисельного розрахунку (такі оцінки називають апостеріорними). Найефективнiшим оцінюванням є використання оцiнки з подвiйним перерахунком.

Розглянемо детальнiше метод подвiйного перерахункудля  таких трьох випадків [2]:

1) задано крок iнтегрування h i треба визначити точні цифри наближеного розв’язку в кожнiй вузловiй точцi ;

2) задано точнiсть ε>0, з якою треба обчислити наближений розв’язок задачi, добираючи належним чином як сам метод, так i крок iнтегрування h;

3) оцiнити похибку – вiдповiдно наближений і точний розв’язок задачi в кожнiй вузловiй точцi .

Для цього розв’язок задачi (1)-(2) у кожнiй вузловiй точці обчислюють двiчі: з кроком h i h/2. Позначатимемо їх вiдповiдно .

Десятковi розряди наближень , які збiгаються мiж собою, вважають точними цифрами наближеного розв’язку в точцi .

Якщо наближений розв’язок задачi (1)-(2) треба обчислити з наперед заданою точнiстю є>0, то, використовуючи метод певного порядку точностi, інтегрування з кроками h і h/2 доцiльно вести паралельно, щоб вчасно визначити неузгодженiсть мiж значеннями  i, можливо, перейти до нового кроку.

Якщо ж у точцi  значення задовольняють нерiвність то крок інтегрування для наступної точки треба збільшити, наприклад, подвоїти. Якщо то крок ітегрування ділять навпіл. Цим забезпечують автоматичний вибiр кроку iнтегрування.

Нарештi, наявнiсть наближених значень , обчислених вiдповiдно з кроком h i h/2, дає змогу наближено оцiнити похибку методу у точцi  . Для одержання оцiнки похибки, припустимо, що виконуються такі умови:

1) на кожному кроці iнтегрування h похибка методу приблизно пропорцiйна до де S – порядок точностi методу;

2) похибка методу на кожному кроцi інтегрування однакова;

3) на кожному наступному кроцi інтегрування сумарна похибка методу містить також усi похибки, зробленi на попереднiх кроках.

Тому, якщо де М — невiдомий коефiцiєнт пропорційності, то

Отже, для похибки в точцi  у випадку iнтегрування з кроком h маємо рівнiсть

    (4.1)

а при інтегруванні з кроком h/2 – рiвність

     (4.2)

Віднявши почленно (4.2) вiд рiвностi (4.1) та розв’язавши одержане рівняння щодо невiдомого коефiцiєнта М, знайдемо

Пiдставивши це значення M в (4.2), отримаємо

    (4.3)

Оцiнювання абсолютної похибки за допомогою величини називають правилом Рунге.

Варіант 17

Застосовуючи чисельнi методи розв’язування задачi Кошi, розв’язати диференцiйне рiвняння першого порядку з точнiстю є =0.0001 на відрiзку  із кроком h= 0.05 i заданими початковими умовами , а також порівняти отриманий розв’язок із точним розв’язком y*, використовуючи правило Рунге.

Текст програми:

//---------------------------------------------------------------------------

#include <vcl.h>

#include <math.h>

#pragma hdrstop

#include "RungeUn.h"

//---------------------------------------------------------------------------

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

float x0, y0, xn0, ytn1, yn0, eps, h, xn1, yn1, k1, k2;

bool modif=true;

//---------------------------------------------------------------------------

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---------------------------------------------------------------------------

double func(double xn0, double yn0)

{

return ((yn0*yn0+xn0)/(xn0*yn0));

}

//---------------------------------------------------------------------------

double func_toch(double xn0)

{

return (sqrt(2*xn0*(3*xn0-1)));

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 x0=StrToFloat(LabeledEdit1->Text);

 y0=StrToFloat(LabeledEdit2->Text);

 h=StrToFloat(LabeledEdit3->Text);

 eps=StrToFloat(LabeledEdit4->Text);

 Memo1->Clear();

 Memo1->Lines->Add((AnsiString)"      x                y              h               ytoch");

 xn0=x0;

 yn0=y0;

 while (xn0 < (x0+0.5))

{

  k1 = h * func(xn0,yn0);

  k2 = h * func(xn0+h,yn0+k1);

  yn1 = yn0 + (k1+k2)/2.0;

  xn1 = xn0 + h;

  xn0 = xn1;

  yn0 = yn1;

  ytn1=func_toch(xn1);

  Memo1->Lines->Add(FloatToStrF(xn1,ffFixed,8,4)+

                     (AnsiString)"      "+

                     FloatToStrF(yn1,ffFixed,8,4)+

                     (AnsiString)"      "+

                     FloatToStrF(h,ffFixed,8,4)+

                     (AnsiString)"      "+

                     FloatToStrF(ytn1,ffFixed,8,4));

  if(abs(yn1-ytn1)>eps){h/=2.0; modif=false;}

  else if(!modif){h*=2; modif=true;}

}

}

//-----------------------------------------------------------------------------------------------------------

Результат виконання програми:

    Висновок: На цій лабораторній роботі я вивчив і засвоїв постановку та методи розв’язування задачі Коші. Навчився досліджувати розв’язок, використовуючи метод Рунге-Кутта.


 

А также другие работы, которые могут Вас заинтересовать

8771. Технологии удалённого доступа 42.5 KB
  Технологии удалённого доступа Под удалённым доступом понимается предоставление ресурсов сети с использованием общедоступных, чаще всего телефонных каналов связи. Наиболее проблемным участком таких каналов является участок от абонента до телефонной с...
8772. Удалённый доступ по радиоканалам 44 KB
  Удалённый доступ по радиоканалам Неоспоримые преимущества, присущие беспроводным технологиям, способствуют их быстрому развитию и массовому внедрению, особенно в связи с бурным распространением таких мобильных компьютерных систем, как сотовый телефо...
8773. WEB публикации 38 KB
  WEB публикации В настоящее время существует достаточное количество серверных программных продуктов для представления информационный ресурсов по протоколу http, или Web (WWW) публикаций. Остановился на трех наиболее популярных в России...
8774. UDP пакет 39.5 KB
  UDP пакет Протоколы UDP и TCP относятся к транспортному уровню модели стека TCP/IP Протокол UDP (UserDatagramProtocol) не требует подтверждения получения, не обеспечивает гарантированности доставки и, следовательно, целостност...
8775. ТСР (Transmission Control Protocol) протокол 41 KB
  TCP пакет ТСР (Transmission Control Protocol) протокол обеспечивает сквозную доставку данных прикладным процессам на взаимодействующих по сети узлах. ТСР - надёжный потоковый протокол с установлением соединения и последующим двунаправленны...
8776. Электронная почта (E-mail) 39.5 KB
  E-mail Электронная почта (E-mail) - один из старейших и наиболее распространённых сетевых сервисов, популярных как в локальных, так и глобальных сетях. Система электронной почты появилась в 1982 г. как сервис предка Internet сети ARPANET. Эта с...
8777. DNS Задача разрешения имен подразумевает определение IP адреса узла 44.5 KB
  DNS Задача разрешения имен подразумевает определение IP адреса узла по его символьному имени и определение символьного имени по заданному IP адресу. Исторически первый, но до сих пор действующий механизм разрешения имен связан с прямым заданием табл...
8778. NAT (Network Address Translation - трансляция сетевых адресов) 50.5 KB
  NAT, Proxy NAT (Network Address Translation - трансляция сетевых адресов) реализует преобразование (подмену) IP адресов локальных сетей во внешние IP адреса глобальной сети Internet...
8779. VLAN (Virtual Local Area Network) и VPN (Virtual Private Network) 38 KB
  VLAN, VPN. VLAN(Virtual Local Area Network) иVPN(Virtual Private Network)- два популярных способа решения задачи построения независимых сетей, использующих общие физические линии связи в локальны...