38736

Исследование динамики поступательно-вращательного движения твердого тела

Лабораторная работа

Физика

На вертикальной стойке 1 нанесена миллиметровая шкала по которой определяется ход маятника. Фотодатчик предназначен для выдачи электрических сигналов на секундомер 10 в момент пересечения светового луча диском маятника. Теоретические сведения Маятник Максвелла массой m поднятый на высоту h путем намотки нитей подвеса на стержень маятника имеет потенциальную энергию mgh.

Русский

2013-09-29

159.5 KB

255 чел.

Санкт-Петербургский государственный

электротехнический университет

«ЛЭТИ»

кафедра физики

Исследование динамики поступательно-вращательного

движения твердого тела

Лабораторная работа № 6

Санкт-Петербург, 2012


РАБОТА №6

Исследование динамики поступательно-вращательного движения твердого тела

Цель работы: изучение законов поступательно-вращательного движения твердого тела,  сохранения энергии, определение момента инерции маятника.

Приборы и принадлежности: маятник Максвелла, секундомер, масштабная линейка, штангенциркуль

Маятник Максвелла (рис. 5.1) представляет собой диск 6, закрепленный на стержне 7, подвешенном на бифилярном подвесе 5 к верхнему кронштейну 2. На диск крепится кольцо 8. Верхний кронштейн 2, установленный на вертикальной стойке 1, имеет электромагнит и устройство 4 для регулировки бифилярного подвеса. Маятник с кольцом фиксируется в верхнем исходном положении с помощью электромагнита.

На вертикальной стойке 1 нанесена миллиметровая шкала, по которой определяется ход маятника. На нижнем кронштейне 3 находится фотоэлектрический датчик 9. Кронштейн обеспечивает возможность перемещения фотодатчика вдоль вертикальной стойки и его фиксирования в любом положении в пределах шкалы 0420 мм. Фотодатчик предназначен для выдачи электрических сигналов на секундомер 10 в момент пересечения светового луча диском маятника.

Теоретические сведения

Маятник Максвелла массой m, поднятый на высоту h путем намотки нитей подвеса на стержень маятника, имеет потенциальную энергию mgh. После отключения электромагнита маятник начинает раскручиваться, совершая поступательно-вращательное движение. Потенциальная энергия маятника переходит в кинетическую энергию поступательного движения mv2/2 его центра масс и энергию вращательного движения I2/2 вокруг центра масс. На участках опускания и подъема маятника потери энергии на трение пренебрежимо малы по сравнению с изменением механической энергии. В момент полного разматывания нити происходит рывок маятника и частичный переход механической энергии в тепло. На основании закона сохранения механической энергии на участке пути меньшем длины нити, можно написать

,    (5.1)

где  – скорость маятника в момент пересечения оптической оси фотодатчика;  – его угловая скорость вращения в тот же момент времени,  – радиус стержня, на который намотана нить маятника, I момент инерции маятника. Из уравнения (5.1) получим для экспериментального значения момента инерции маятника

    (5.2)

где учтено, что , a  ускорение, с которым опускается маятник. Учитывая, что , получим

.     (5.3)

При учете теплоты, выделяющейся в момент рывка нити маятником при полном разматывании нити, уравнение закона сохранения энергии имеет вид

mgh = mv2/2 + I2/2 + Q,

где Q – количество выделившейся теплоты.

Эту количество теплоты можно оценить по изменению высоты первого подъёма маятника: Q = mgh, где h – изменение высоты наивысшего положения маятника в первом цикле спуск-подъем.

Теоретическое значение момента инерции маятника относительно его оси рассчитывается по формуле

,   (5.4)

где  – масса стержня; M  – масса диска, укрепленного на стержне; – масса  кольца; r – радиус стержня,  R – внешний радиус диска; Rк – внешний радиус кольца.

Задание по подготовке к работе

Изучите описание лабораторной работы.

Подготовьте бланк Протокола наблюдений (формат А4).

Создайте Таблицу 1, в которую внесите: – масса стержня; M = 131 г – масса диска, укрепленного на стержне; – масса  кольца (написана на установке),  - полная масса маятника. В таблицу также включите измеряемые в опыте величины: r – радиус диска, R – внешний радиус диска; Rк – внешний радиус кольца. Таблицу 1 занесите в протокол наблюдений.

Создайте Таблицу 2 для определения ускорения падения маятника выборочным методом  и занесите ее в протокол.  Таблица должна содержать

а) строку четырех высот  свободного хода маятника,

б) пять строк для времени  движения маятника с этих высот до пересечения оси оптического датчика времени,

в) строку средних значений этих времен.

Сформулируйте алгоритмы обработки данных косвенных измерений выборочным методом и методом переноса погрешностей.

Указания к выполнению наблюдений

  1.  Измерьте штангенциркулем диаметры стержня, диска и кольца и занесите их радиусы в Таблицу 1 (см. п.4 задания по подготовке к работе).
  2.  Установите нижний кронштейн 3 с фотодатчиком 9 в крайнее положение по высоте. Боковая риска на кронштейне служит указателем для отсчета высоты. По шкале, пользуясь указателем кронштейна, определите и запишите ход маятника.
  3.  Произведите регулировку положения основания при помощи регулировочных опор так, чтобы диск на бифилярном подвесе находился посередине фотодатчика. Установите с помощью устройства 4 максимальную длину бифилярного подвеса, меньшую его полной длины, таким образом, чтобы нижний край кольца маятника находился на 45 мм ниже оптической оси фотодатчика; при этом ось маятника должна занять горизонтальное положение.
  4.  Нажмите кнопку «СЕТЬ», расположенную на лицевой панели секундомера; при этом должны загореться лампочки фотодатчика и цифровые индикаторы секундомера. Вращая маятник, зафиксируйте его в верхнем положении при помощи электромагнита; при этом необходимо следить за тем, чтобы нить наматывалась на стержень виток к витку. В зафиксированном положении нити подвеса должны быть ослаблены.
  5.  Нажмите кнопку «СБРОС», затем кнопку «ПУСК». При этом электромагнит обесточивается, маятник раскручивается, секундомер начинает производить отсчет времени, прекращающийся в момент пересечения маятником оптической оси фотодатчика. Запишите значение времени. Вращая маятник, вновь зафиксируйте его в верхнем положении. Нажав последовательно кнопки «СБРОС» и «ПУСК», повторите наблюдения еще 4 раза на данной высоте. Результаты наблюдений занесите в Таблицу 2.
  6.  Измерьте время опускания маятника для данной длины свободного хода маятника. Для этого поднимите нижний кронштейн с фотодатчиком на 56 см и зафиксируйте его на стойке. С помощью винта 4 вновь установите необходимую длину бифилярного подвеса и проведите 5 наблюдений по определению времени свободного хода маятника. Запишите длину хода маятника в Таблицу 2.
  7.  Указанную в п. 3 процедуру проделайте еще для двух высот, уменьшая каждый раз длину свободного хода на 56 см. Таким образом, для четырех величин свободного хода маятника будет получено 20 значений времени и четыре средних значений времен движения маятника для этих высот.
  8.  Опустите кронштейн с фотодатчиком в крайнее нижнее положение. Отрегулируйте бифилярный подвес для свободного хода маятника в соответствии с п. 2. Запишите в протокол длину  свободного хода маятника. Запишите значение шкалы, против которого после раскручивания остановится ось маятника. Поднимите маятник в верхнее положение и нажмите кнопку ПУСК. Определите высоту , на которую поднимется маятник после рывка нити, и запишите ее в протокол.

Задание по обработке результатов  

  1.  Создайте Таблицу обработки экспериментальных данных. Включите в нее строки Таблицы 2 Протокола наблюдений, а также строку ускорения, , с которым опускается маятник в каждом из четырех случаев, и строку приборной погрешности  определения ускорения. Выведите формулу приборной погрешности ускорения движения маятника  и впишите ее в первый левый столбец Таблицы.
  2.  Используя две последние строки Таблицы обработки экспериментальных данных, рассчитайте выборочным методом среднее значение ускорения падения маятника и его полную погрешность .
  3.  Сделайте упрощенный рисунок маятника, используемого в данной работе, и укажите на нем все силы, действующие на него. Используя рисунок, напишите второй закон Ньютона для центра масс маятника и уравнение вращательного движения маятника вокруг него. Из этой системы уравнений найдите выражение для ускорения падения маятника и сопоставьте его с полученным в п. 2.
  4.  Используя метод переноса погрешностей, рассчитайте среднее значение момента инерции маятника и, используя метод логарифмирования функции, его полную погрешность  на основе среднего ускорения падения маятника по формуле (5.2).
  5.  Используя метод образования выборки, рассчитайте среднее значение момента инерции маятника и его полную погрешность  на основе измеренных времен падения по формуле (5.3).
  6.   Рассчитайте по формуле (5.4) теоретическое значение момента инерции маятника  и сопоставьте его со средним экспериментальным значением . Сделайте заключение о причинах расхождения значений моментов инерции, если таковое имеется.
  7.  Рассчитайте количество теплоты, выделяющейся при рывке маятника в нижней точке его движения. При расчете используйте значения начальной высоты падения маятника  и высоты его подъема после рывка , определенные в п. 8 указаний по выполнению наблюдений.

Контрольные вопросы

  1.  Докажите уравнения связи между линейными и угловыми величинами при вращательном движении тела , , ,. Каков смысл входящих в эти выражения параметров? Одинаковы ли значения величин  относительно параллельных осей вращения?
  2.  Используя одну из высот и время падения с нее маятника в данной работе, рассчитайте

а) линейное  и угловое  ускорение маятника,

б) линейную  и угловую  скорость маятника, а также частоту n его вращения в этот момент времени,

г) угол поворота  и число оборотов N, которое сделает маятник за это время.

  1.  Сделайте упрощенный рисунок маятника, используемого в данной работе, и укажите на нем все силы, действующие на него. Какая из сил на рисунке играет роль силы трения качения? Чему равна работа этой силы, если проскальзывание между нитью и стержнем отсутствует?
  2.  Объясните, почему возможно применение закона сохранения механической  энергии для описания движения маятника, и на каком участке его движения.
  3.  Напишите закон сохранения механической энергии для маятника в данной лабораторной работе и вытекающее из него выражение для ускорения его падения.
  4.  Рассчитайте величину силы натяжения нити маятника.
  5.  Используя теоретическое значение момента инерции маятника , рассчитайте ускорение падения маятника и сопоставьте его с экспериментальным средним значением, полученным в данной работе.
  6.   Каким образом можно оценить количество теплоты, выделяющееся при рывке маятника в данной работе?


 

А также другие работы, которые могут Вас заинтересовать

82269. Антинатуралистическая исследовательская программа и ее общенаучное значение 36.58 KB
  Природа остается в качестве предпосылки деятельности человека но культур центризмом не схватывается оставляя место натурализму Другой причиной жизненности натуралистической исследовательской программы является вызванное объективными социальными изменениями крушение классических рационалистических установок. Она по существу указала на границы натуралистической программы. Натуралистическая и антинатуралистическая программы направлены на изучение одного и того же объекта но в соответствии со своей методологией исследовательской программой...
82270. Применение натуралистической и антинатуралистической исследовательских программ ва социально –гуманитарных науках 33.52 KB
  В них присутствуют: натуралистическая парадигма общества основные варианты: механицизм физикализм биологизм географический детерминизм демографический детерминизм – общество понимается как жестко-детерминированная система обусловленная влиянием определенных природных факторов климата полезных ископаемых территории и т. оно рассматривается с редукционистских позиций; антинатуралистическая парадигма общества основные варианты: социологизм экономизм психологизм антипсихологизм – общество понимается как...
82271. Проблема разделения социальных и гуманитарных наук пол предмету, по методу, по предмету и методу одновременно, по исследовательским программам 34.01 KB
  В настоящее время считается что естественные науки и социально-гуманитарные науки имеют как общие так и различные характеристики. Естественные и социально-гуманитарные науки обладают всеми признаками науки как особого феномена познание нового наличие эмпирического и теоретического уровней оформленность в понятиях и т. Вместе с тем социально-гуманитарные науки отличаются от естественно-математических и технических наук по следующим основаниям: по объекту исследования – естественные науки изучают природную реальность т. то что существует...
82272. Методы социальных и гуманитарных наук 42.51 KB
  Абстрагирование важнейший метод научного постижения реальности. Результатом применения этого метода является абстракция. Наряду с абстрагированием важнейшим методом научного познания на эмпирическом уровне познания является индукция. Индукция это метод движения мысли от менее общего знания к более общему.
82273. Вненаучное социальное знание. Взаимодействие социальных, гуманитарных наук и вненаучного знания в экспертизах социальных проектов и программ 39.26 KB
  Взаимодействие социальных гуманитарных наук и вненаучного знания в экспертизах социальных проектов и программ. Эйнштейн ищут основания знания в философии и художественной литературе. Антифундаменталистская тенденция просматривается в истолковании всех важнейших областей научного познания: математического естественнонаучного гуманитарного. В то время как сциентизм базируется на абсолютизации рациональнотеоретических компонентов знания антисциентизм опирается на ключевую роль этических правовых культурных ценностей по отношению к идеалу...
82274. Дисциплинарная структура социально –гуманитарного знания и междисциплинарные исследования. Дифференциация и интеграция знаний 37 KB
  В дальнейшем проблематика связанная с первым типам междисциплинарности практически полностью стала изучаться в рамках исследований по классификации науки и ее развития. При этом главная Наука как социальный институт задача состоит в том чтобы преодолеть в процессе исследований отмеченное в свое время И. Эта задача пусть и не всегда в явной форме стоит перед участниками междисциплинарных исследований любого масштаба . Успешное осуществление междисциплинарных исследований предполагает одновременное решение трех видов проблем:...
82275. Переопределение парадигм и предметно- тематических направлений, появление новых областей исследования 38.77 KB
  В ходе развития науки в последней трети XX в. Ее фундамент составляют ставшие общенаучными принципы развития и системности. Такое понимание процессов развития исходит из синергетики. Вопервых принцип развития эволюции в современной науке получил статус фундаментальной мировоззренческой и методологической константы.
82276. Роль СГН и вненаучного знания в экспертизах социальных проектов и программ 32.11 KB
  Социальногуманитарные науки являются социальнокультурным феноменом изменяются вместе с обществом. Социальногуманитарные науки необходимы для разработки стратегии развития общества для понимания человеком своего места в социальной среде. Социальная политика всегда нуждается в социальной науке так как первая – лишь излагает определенные идеалы а вторая – мысленно упорядочивает факты и предлагает варианты действий М. Социальногуманитарные науки развиваются в настоящее время по следующим основным направлениям: сближение с...
82277. Изменения дисциплинарной структуры социально-гуманитарного знания в современных условиях. Смена лидирующих дисциплин 35.88 KB
  Вместе с тем региональные и функциональные различия науки обусловленные уровнем экономического технологического развития природными ресурсами вносят определенную спецификацию в совокупный потенциал развития науки. Одним из бесспорных мировоззренческих итогов науки начала XXI в. В основе научного мировоззрения лежит представление о возможности научного постижения сущности многообразных явлений современного мира о том что прогресс развития человечества связан с достижениями науки. Острые споры ведутся вокруг проблемы взаимоотношений...