3874

Чисельний метод розв’язання задач стаціонарної теплопровідності

Практическая работа

Энергетика

Чисельний метод розв’язання задач стаціонарної теплопровідності Умова задачі Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки ...

Украинкский

2012-11-09

202.5 KB

8 чел.

Чисельний метод розв’язання задач стаціонарної теплопровідності

Умова задачі

Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки δ=10мм. На основі вирахуваних локальних значень температур накреслити сімейство інтерпольованих ізотерм , для поперечного перерізу стержня провести лінії теплового потоку.

Поперечний переріз стержня має прямокутну форму з розмірами l1=30мм, l2=40мм. Коефіцієнт теплопровідності матеріалу стержня λ=50 Вт/м∙К.

Схема завдання граничних умов в поперечному перерізі стержня показана на рис.1

                                                                  

 

                      

                                                            


     

    

Рис. 1 Поперечний перетин стержня

           

qс10-5, Вт/м2

tж1,0С

tж2,0С

λ, Вт/мК

α1 ,Вт/м2К

α2,Вт/м2К

l1, мм

l2, мм

0,9

50

75

50

1200

2500

30

40

              

2. ПОБУДОВА РОЗРАХУНКОВОЇ СІТКИ

Дана задача двомірна з розмірами 4030мм. Побудуємо розрахункову сітку з постійним кроком розбиття = 10 мм = Dx = Dy. Диференційне рівняння теплопровідності заміняють рівнянням теплопровідності в кінечних різницях. Для того, щоб в розрахунковій сітці отримати вузлові крапки, що лежать безпосередньо на поверхні тіла, розбиття здійснюють з половинним кроком. Тоді в процесі побудови розрахункової сітки досліджуваної  області отримаємо,  що  елементарні об'єми уздовж меж області будуть удвічі менші (в кутках прямокутника - в чотири рази менше) внутрішніх об'ємів . При цьому серед сукупності вузлових точок розрахункової сітки будуть і такі, які належать бічній поверхні і її ребрам. Всім вузловим крапкам з невідомою температурою привласнимо  свій номер числами 1, 2, 3, 20, оскільки температура в кожній точці буде різниця одна від іншої.

 1 2 3 4                      5

   

 

  

 6 7  8 9 10  

 11 12 13 14 15   

    

16 17 18 19                   16

           

Рис. 2 Схема розрахункової сітки

                                                                                                                              

3. СКЛАДАННЯ РІВНЯНЬ ЕНЕРГОБАЛАНСА ДЛЯ ВУЗЛОВИХ

ТОЧОК СІТКИ

Складаємо рівняння  енергобалансу  для  точок  з  невідомою  температурою. Для  цього   для  кожного  із  обємів тіла вибираємо  вузлуву  точку . Після  цього  переходимо  від  диференціального  рівняння  теплопровідності  до  рівняння  теплопровідності  в  кінцевих   різницях  , для  чого  робимо  заміну   диференціалів  на  кінцеві  прирости.

      

 

                       Qж2,2           

1       Q1,2 2 Q3,2       3

                                        Q7,2

 6     7                  8

 

рис. 3 Схема енергобалансу 2 точки

Точка 1

Точка 2

Точка 3

Точка 4

Точка 5

Точка 6

Точка 7

 

Точка 8

Точка 9

Точка 10

Точка 11

Точка 12

Точка 13

Точка  14

Точка 15

Точка 16

Точка 17

Точка 18

Точка 19

Точка 20

З рівнянь енергобалансу отримаємо таку систему лінійних алгебраїчних рівнянь

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  

4. РОЗВ'ЯЗОК СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ

Для розв’язку даної системи використаємо програмний пакет MS EXEL. Розв’язки рівнянь знаходять за допомогою перемноження матриць.

Вихідна таблиця з коефіцієнтами при відповідних невідомих температурах та вільними членами рівняння.

Табл .1

Коефіцієнти в рівняннях для відповідних вузлових точок при температурах

Вільний член рівняння

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

1

-5

2

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-111

2

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

-75

3

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

-75

4

0

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

-75

5

0

0

0

25

-68,5

0

0

0

0

25

0

0

0

0

0

0

0

0

0

0

-1237,5

6

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

0

0

0

0

-36

7

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

0

8

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

9

0

0

0

1

0

0

0

1

-4

1

0

0

1

1

0

0

0

0

0

0

0

10

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

0

0

0

0

0

-600

11

0

0

0

0

0

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

12

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

13

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

14

0

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

15

0

0

0

0

0

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

-600

16

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

-2

1

0

0

0

-18

17

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

0

-36

18

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

-36

19

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

0

0

0

25

-56

-300

При розв’язуванні даної системи отримаємо такі результати:

      табл. 2

t1

115,13

t2

103,66

t3

96,01

t4

89,23

t5

82,47

t6

128,66

t7

116,09

t8

106,09

t9

96,33

t10

87,25

t11

131,35

t12

125,93

t13

115,91

t14

102,77

t15

91,72

t16

144,87

t17

140,39

t18

128,83

t19

107,13

t20

94,13

5. АНАЛІЗ ТЕМПЕРАТУРНОГО ПОЛЯ

На основі розрахованих локальних значень температур, зобразимо температурне поле у поперечному перерізі стержня (рис.3). Для цього накреслимо у масштабі поперечний переріз стержня, відмітимо положення вузлових точок і покажемо значення температур в них, а потім побудуємо з певним вибраним інтервалом сім’ю інтерпольованих ізотерм.

На графіку температурного поля (рис.3) нанесемо лінії теплового потоку ортогонально до ізотерм.

З рисунка видно, що температурне поле спадає справа наліво і зверху  вниз, тому що на правій частині нижньої грані та на нижній половині лівої грані немає теплообміну з навколишнім середовищем, а зверху і справа відбувається теплообмін з рідиною, температура якої менша температури стінки. Також ізотерми густішають в лівому нижньому куті, тому що на малому інтервалі розміщується велика різниця температур. Лінії теплового потоку рідкі у правому верхньому куті, так як ізотерми там менш густіші.

qc=const

15

15

qc=const

qc=const

qc=const


 

А также другие работы, которые могут Вас заинтересовать

1508. Специальные налоговые режимы 103.5 KB
  Упрощенная система налогообложения (гл. 26.2 НК РФ). Система налогообложения в виде единого налога на вмененный доход для отдельных видов деятельности. Единый сельскохозяйственный налог для сельскохозяйственных товаропроизводителей. Соглашение о разделе продукции.
1509. Валютный рынок России 107.5 KB
  Формирование российского валютного рынка. Валютное регулирование. Регулирование валютного курса рубля и динамика его изменения. Перспективы развития российского рынка и стабилизации курса рубля.
1510. Понятия миссии и миссионерства/ О православной миссии 107.48 KB
  Понятия миссии и миссионерства. Традиционные и нетрадиционные религии. Причины возникновения миссионерства. Методология миссионерства. Основной принцип миссионера. Оружие миссионера.
1511. Анализ предприятия по его производственных цехов по производству военного оборудования 94.01 KB
  Структура предприятия и ее общая характеристика. Материально техническое снабжение предприятия. КИП и А, технологическое оборудование на предприятии. Анализ поступления изделий на участок. Разработка технологии настройки изделия.
1512. Композиционные материалы 67 KB
  Выбор материала корпуса. Армирующий материал. Выбор материала электродов. Свойства полипропилена, и его производство на предприятиях химической промышленности применяются различная аппаратура: реакторы, технологические газоходы, циклоны, каплеуловители, емкости и т.п.
1513. Проектирование предприятия по производству насосов 98.08 KB
  Определение плана производства и обоснование производственной мощности (на примере производства насосов). Технико-экономическое обоснование варианта размещения предприятия. Транспортные затраты по обеспечению завода материалами и полуфабрикатами.
1514. Принципы работы в основных компьютерных программах Microsoft 478 KB
  Система MIKROSOFT OUTLOOK, в планировании работ и событий. Текстовый редактор MICROSOFT WORD, в организации документоведения. Система Microsoft Exel. Работа с электронными таблицами. Создание презентаций в системе Ms Power Point.
1515. Звіт про виконання лабораторних робіт з дисципліни економічної інформатики 38.22 KB
  Моделювання математичних процесів. Моделювання обчислень в економічних задачах табличного вигляду. Кругові графіки. Моделювання циклічних процесів.
1516. Проект одноступенчатого редуктора для электродвигателя марки А100S2У3 28.75 KB
  Номинальные частоты вращения и угловые скорости редуктора. Делительный диаметр червячного колеса. Предварительный Расчет валов редуктора и конструирование червяка и червячного колеса. Конструкционные размеры корпуса редуктора.