3874

Чисельний метод розв’язання задач стаціонарної теплопровідності

Практическая работа

Энергетика

Чисельний метод розв’язання задач стаціонарної теплопровідності Умова задачі Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки ...

Украинкский

2012-11-09

202.5 KB

8 чел.

Чисельний метод розв’язання задач стаціонарної теплопровідності

Умова задачі

Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки δ=10мм. На основі вирахуваних локальних значень температур накреслити сімейство інтерпольованих ізотерм , для поперечного перерізу стержня провести лінії теплового потоку.

Поперечний переріз стержня має прямокутну форму з розмірами l1=30мм, l2=40мм. Коефіцієнт теплопровідності матеріалу стержня λ=50 Вт/м∙К.

Схема завдання граничних умов в поперечному перерізі стержня показана на рис.1

                                                                  

 

                      

                                                            


     

    

Рис. 1 Поперечний перетин стержня

           

qс10-5, Вт/м2

tж1,0С

tж2,0С

λ, Вт/мК

α1 ,Вт/м2К

α2,Вт/м2К

l1, мм

l2, мм

0,9

50

75

50

1200

2500

30

40

              

2. ПОБУДОВА РОЗРАХУНКОВОЇ СІТКИ

Дана задача двомірна з розмірами 4030мм. Побудуємо розрахункову сітку з постійним кроком розбиття = 10 мм = Dx = Dy. Диференційне рівняння теплопровідності заміняють рівнянням теплопровідності в кінечних різницях. Для того, щоб в розрахунковій сітці отримати вузлові крапки, що лежать безпосередньо на поверхні тіла, розбиття здійснюють з половинним кроком. Тоді в процесі побудови розрахункової сітки досліджуваної  області отримаємо,  що  елементарні об'єми уздовж меж області будуть удвічі менші (в кутках прямокутника - в чотири рази менше) внутрішніх об'ємів . При цьому серед сукупності вузлових точок розрахункової сітки будуть і такі, які належать бічній поверхні і її ребрам. Всім вузловим крапкам з невідомою температурою привласнимо  свій номер числами 1, 2, 3, 20, оскільки температура в кожній точці буде різниця одна від іншої.

 1 2 3 4                      5

   

 

  

 6 7  8 9 10  

 11 12 13 14 15   

    

16 17 18 19                   16

           

Рис. 2 Схема розрахункової сітки

                                                                                                                              

3. СКЛАДАННЯ РІВНЯНЬ ЕНЕРГОБАЛАНСА ДЛЯ ВУЗЛОВИХ

ТОЧОК СІТКИ

Складаємо рівняння  енергобалансу  для  точок  з  невідомою  температурою. Для  цього   для  кожного  із  обємів тіла вибираємо  вузлуву  точку . Після  цього  переходимо  від  диференціального  рівняння  теплопровідності  до  рівняння  теплопровідності  в  кінцевих   різницях  , для  чого  робимо  заміну   диференціалів  на  кінцеві  прирости.

      

 

                       Qж2,2           

1       Q1,2 2 Q3,2       3

                                        Q7,2

 6     7                  8

 

рис. 3 Схема енергобалансу 2 точки

Точка 1

Точка 2

Точка 3

Точка 4

Точка 5

Точка 6

Точка 7

 

Точка 8

Точка 9

Точка 10

Точка 11

Точка 12

Точка 13

Точка  14

Точка 15

Точка 16

Точка 17

Точка 18

Точка 19

Точка 20

З рівнянь енергобалансу отримаємо таку систему лінійних алгебраїчних рівнянь

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  

4. РОЗВ'ЯЗОК СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ

Для розв’язку даної системи використаємо програмний пакет MS EXEL. Розв’язки рівнянь знаходять за допомогою перемноження матриць.

Вихідна таблиця з коефіцієнтами при відповідних невідомих температурах та вільними членами рівняння.

Табл .1

Коефіцієнти в рівняннях для відповідних вузлових точок при температурах

Вільний член рівняння

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

1

-5

2

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-111

2

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

-75

3

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

-75

4

0

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

-75

5

0

0

0

25

-68,5

0

0

0

0

25

0

0

0

0

0

0

0

0

0

0

-1237,5

6

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

0

0

0

0

-36

7

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

0

8

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

9

0

0

0

1

0

0

0

1

-4

1

0

0

1

1

0

0

0

0

0

0

0

10

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

0

0

0

0

0

-600

11

0

0

0

0

0

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

12

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

13

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

14

0

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

15

0

0

0

0

0

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

-600

16

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

-2

1

0

0

0

-18

17

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

0

-36

18

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

-36

19

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

0

0

0

25

-56

-300

При розв’язуванні даної системи отримаємо такі результати:

      табл. 2

t1

115,13

t2

103,66

t3

96,01

t4

89,23

t5

82,47

t6

128,66

t7

116,09

t8

106,09

t9

96,33

t10

87,25

t11

131,35

t12

125,93

t13

115,91

t14

102,77

t15

91,72

t16

144,87

t17

140,39

t18

128,83

t19

107,13

t20

94,13

5. АНАЛІЗ ТЕМПЕРАТУРНОГО ПОЛЯ

На основі розрахованих локальних значень температур, зобразимо температурне поле у поперечному перерізі стержня (рис.3). Для цього накреслимо у масштабі поперечний переріз стержня, відмітимо положення вузлових точок і покажемо значення температур в них, а потім побудуємо з певним вибраним інтервалом сім’ю інтерпольованих ізотерм.

На графіку температурного поля (рис.3) нанесемо лінії теплового потоку ортогонально до ізотерм.

З рисунка видно, що температурне поле спадає справа наліво і зверху  вниз, тому що на правій частині нижньої грані та на нижній половині лівої грані немає теплообміну з навколишнім середовищем, а зверху і справа відбувається теплообмін з рідиною, температура якої менша температури стінки. Також ізотерми густішають в лівому нижньому куті, тому що на малому інтервалі розміщується велика різниця температур. Лінії теплового потоку рідкі у правому верхньому куті, так як ізотерми там менш густіші.

qc=const

15

15

qc=const

qc=const

qc=const


 

А также другие работы, которые могут Вас заинтересовать

3456. Методология управления предприятием в современных условиях. Анализ деятельности предприятий ОАО Медика ОАО Московский кондитер 400 KB
  Актуальность исследуемой темы не вызывает сомнения. От уровня разработанности теоретической базы и профессионализма ее реализации, непосредственно, на практике  зависит успех компании. Безусловно, в современных условиях количество факт...
3457. Разработка разомкнутой системы электропривода насосных агрегатов типа НМ-7000-210 нефтеперекачивающей станции Уват-1 1.59 MB
  В данном курсовом проекте производится выбор основного силового оборудования системы электропривода. В результате выполнения проекта производится выбор двигателя с применением частотно – регулируемого асинхронного электропривода насоса маги...
3458. Технологии и комплекс машин по возделыванию и уборке ячменя 166.54 KB
  Сельское хозяйство Республики Беларусь является одной из основных отраслей народнохозяйственного комплекса, задачей которого является обеспечение продовольственной безопасности государства, а перерабатывающие предприятия сырьем. Совер...
3459. Совершенствование финансового контроля в торговой организации малого бизнеса (на примере ООО «ТеплоТехноСервис» г. МОСКВА) 832 KB
  Торговые предприятия, с одной стороны, завершают производства, а с другой стороны, обеспечивают удовлетворение значительной части личных потребностей населения в товарах и услугах. Существенна роль предприятий торговли в функционировании кредитно-финансовой системы: около 90% всей денежной наличности, поступающей в банки, составляет выручка от продажи товаров и услуг.
3460. Проверка классического распределения максвелла для скоростей частиц газа термоэлектронов 178 KB
  Проверка классического распределения максвелла для скоростей частиц газа термоэлектронов На основании опытной зависимости анодного тока электронной лампы от величины задерживающего напряжения между сеткой и катодом необходимо установить вид функции ...
3461. Изучение нормального распределения случайной величины на доске Гальтона 168.5 KB
  Изучение нормального распределения случайной величины на доске Гальтона Получение экспериментальной кривой распределения случайной величины, сравнение ее с теоретической кривой нормального распределения. Расчет оценочных значений числовых параметров...
3462. Динамика материальной точки 169 KB
  Динамика материальной точки.  Законы Ньютона. Основное уравнение динамики поступательного движения.  Виды взаимодействий. Силы упругости и трения.  Закон Всемирного тяготения. Сила тяжести и вес тела.  Законы Ньютона. Основное ур...
3463. Внешнеторговая деятельность как составная часть внешнеэкономической деятельности 30.5 KB
  Сфера действия соглашения распространяется на товары, которые фактически пересекли ТГ ТС при ввозе на единую ТТ ТС или если товары заявлены к ввозу при применении предварительного декларирования...
3464. Изучение свободных колебаний пружинного маятника 177.5 KB
  Изучение свободных колебаний пружинного маятника. Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих...