3874

Чисельний метод розв’язання задач стаціонарної теплопровідності

Практическая работа

Энергетика

Чисельний метод розв’язання задач стаціонарної теплопровідності Умова задачі Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки ...

Украинкский

2012-11-09

202.5 KB

8 чел.

Чисельний метод розв’язання задач стаціонарної теплопровідності

Умова задачі

Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки δ=10мм. На основі вирахуваних локальних значень температур накреслити сімейство інтерпольованих ізотерм , для поперечного перерізу стержня провести лінії теплового потоку.

Поперечний переріз стержня має прямокутну форму з розмірами l1=30мм, l2=40мм. Коефіцієнт теплопровідності матеріалу стержня λ=50 Вт/м∙К.

Схема завдання граничних умов в поперечному перерізі стержня показана на рис.1

                                                                  

 

                      

                                                            


     

    

Рис. 1 Поперечний перетин стержня

           

qс10-5, Вт/м2

tж1,0С

tж2,0С

λ, Вт/мК

α1 ,Вт/м2К

α2,Вт/м2К

l1, мм

l2, мм

0,9

50

75

50

1200

2500

30

40

              

2. ПОБУДОВА РОЗРАХУНКОВОЇ СІТКИ

Дана задача двомірна з розмірами 4030мм. Побудуємо розрахункову сітку з постійним кроком розбиття = 10 мм = Dx = Dy. Диференційне рівняння теплопровідності заміняють рівнянням теплопровідності в кінечних різницях. Для того, щоб в розрахунковій сітці отримати вузлові крапки, що лежать безпосередньо на поверхні тіла, розбиття здійснюють з половинним кроком. Тоді в процесі побудови розрахункової сітки досліджуваної  області отримаємо,  що  елементарні об'єми уздовж меж області будуть удвічі менші (в кутках прямокутника - в чотири рази менше) внутрішніх об'ємів . При цьому серед сукупності вузлових точок розрахункової сітки будуть і такі, які належать бічній поверхні і її ребрам. Всім вузловим крапкам з невідомою температурою привласнимо  свій номер числами 1, 2, 3, 20, оскільки температура в кожній точці буде різниця одна від іншої.

 1 2 3 4                      5

   

 

  

 6 7  8 9 10  

 11 12 13 14 15   

    

16 17 18 19                   16

           

Рис. 2 Схема розрахункової сітки

                                                                                                                              

3. СКЛАДАННЯ РІВНЯНЬ ЕНЕРГОБАЛАНСА ДЛЯ ВУЗЛОВИХ

ТОЧОК СІТКИ

Складаємо рівняння  енергобалансу  для  точок  з  невідомою  температурою. Для  цього   для  кожного  із  обємів тіла вибираємо  вузлуву  точку . Після  цього  переходимо  від  диференціального  рівняння  теплопровідності  до  рівняння  теплопровідності  в  кінцевих   різницях  , для  чого  робимо  заміну   диференціалів  на  кінцеві  прирости.

      

 

                       Qж2,2           

1       Q1,2 2 Q3,2       3

                                        Q7,2

 6     7                  8

 

рис. 3 Схема енергобалансу 2 точки

Точка 1

Точка 2

Точка 3

Точка 4

Точка 5

Точка 6

Точка 7

 

Точка 8

Точка 9

Точка 10

Точка 11

Точка 12

Точка 13

Точка  14

Точка 15

Точка 16

Точка 17

Точка 18

Точка 19

Точка 20

З рівнянь енергобалансу отримаємо таку систему лінійних алгебраїчних рівнянь

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  

4. РОЗВ'ЯЗОК СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ

Для розв’язку даної системи використаємо програмний пакет MS EXEL. Розв’язки рівнянь знаходять за допомогою перемноження матриць.

Вихідна таблиця з коефіцієнтами при відповідних невідомих температурах та вільними членами рівняння.

Табл .1

Коефіцієнти в рівняннях для відповідних вузлових точок при температурах

Вільний член рівняння

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

1

-5

2

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-111

2

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

-75

3

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

-75

4

0

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

-75

5

0

0

0

25

-68,5

0

0

0

0

25

0

0

0

0

0

0

0

0

0

0

-1237,5

6

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

0

0

0

0

-36

7

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

0

8

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

9

0

0

0

1

0

0

0

1

-4

1

0

0

1

1

0

0

0

0

0

0

0

10

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

0

0

0

0

0

-600

11

0

0

0

0

0

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

12

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

13

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

14

0

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

15

0

0

0

0

0

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

-600

16

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

-2

1

0

0

0

-18

17

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

0

-36

18

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

-36

19

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

0

0

0

25

-56

-300

При розв’язуванні даної системи отримаємо такі результати:

      табл. 2

t1

115,13

t2

103,66

t3

96,01

t4

89,23

t5

82,47

t6

128,66

t7

116,09

t8

106,09

t9

96,33

t10

87,25

t11

131,35

t12

125,93

t13

115,91

t14

102,77

t15

91,72

t16

144,87

t17

140,39

t18

128,83

t19

107,13

t20

94,13

5. АНАЛІЗ ТЕМПЕРАТУРНОГО ПОЛЯ

На основі розрахованих локальних значень температур, зобразимо температурне поле у поперечному перерізі стержня (рис.3). Для цього накреслимо у масштабі поперечний переріз стержня, відмітимо положення вузлових точок і покажемо значення температур в них, а потім побудуємо з певним вибраним інтервалом сім’ю інтерпольованих ізотерм.

На графіку температурного поля (рис.3) нанесемо лінії теплового потоку ортогонально до ізотерм.

З рисунка видно, що температурне поле спадає справа наліво і зверху  вниз, тому що на правій частині нижньої грані та на нижній половині лівої грані немає теплообміну з навколишнім середовищем, а зверху і справа відбувається теплообмін з рідиною, температура якої менша температури стінки. Також ізотерми густішають в лівому нижньому куті, тому що на малому інтервалі розміщується велика різниця температур. Лінії теплового потоку рідкі у правому верхньому куті, так як ізотерми там менш густіші.

qc=const

15

15

qc=const

qc=const

qc=const


 

А также другие работы, которые могут Вас заинтересовать

43469. Синтез регулятора методом желаемых ЛАЧХ 73.5 KB
  Задан объект управления описание которого определяется Wнчs передаточной функцией неизменяемой части системы. Структурная схема следящей системы представлена на рис. Требуется спроектировать регулятор включенный последовательно с неизменяемой частью системы в контуре ошибки с передаточной функцией Wрегs который обеспечивает в замкнутой следящей системе с единичной обратной связью заданный набор показателей качества. Структурная схема проектируемой следящей системы.
43470. Транспортная задача. Общая постановка, цели, задачи. 723 KB
  В общей постановке транспортная задача состоит в отыскании оптимального плана перевозок некоторого однородного груза с баз потребителям . Различают два типа транспортных задач: но критерию стоимости план перевозок оптимален если достигнут минимум затрат на его реализацию и по критерию времени план оптимален если на его реализацию затрачивается минимум времени. План перевозок с указанием запасов и потребностей удобно записывать в виде следующей таблицы называемой таблицей перевозок: Пункты Отправления Пункты назначения Запасы ...
43471. Ремонт и техническое обслуживание стератера 279.33 KB
  Устройство стартера Назначение и виды стартера Стартер представляет собой электродвигатель постоянного тока, прокручивающий коленчатый вал с частотой необходимой для пуска двигателя. При прокручивании маховика двигателя стартер должен преодолеть момент сопротивления, создаваемый силами трения и компрессией.
43472. Проект спеціального ЕРЕ – кварцового резонатора на частоту 3,58 МГц 711 KB
  Вимоги, що ставляться до параметрів, властивостей та характеристик електрорадіоелементів, і, як наслідок, обмеження на їхні типи, визначаються функціональним призначенням схем та ланцюгів, у яких вони використовуються. При виборі елементної бази до певної ЕА також необхідно враховувати умови експлуатації цієї ЕА. Для даного варіанту курсової роботи задані наступні умови експлуатації:
43473. Обобщенная характеристика и особенности системы права Республики Беларусь 179 KB
  Поэтому и нормы права регулирующие эти интересы группируются по отраслям права а отрасли соединяются в систему права взаимно согласуются и дополняют друг друга. А само понятие системы права пришло в юриспруденцию из философии где под ним подразумевалось нечто ценное представляющее собой единство закономерно расположенных и находящихся во взаимной связи частей. Римские юристы ввели это понятие для того чтобы свести в единое целое различные нормы права которые существовали в Древнем Риме. Система права изначально основывалась на...
43474. Программирование приложений Windows. Методические указания 71 KB
  К защите курсовой работы представляется: пояснительная записка; реализация программы в виде законченного приложения; информация на диске. Создание демонстрационнообучающей программы по методом численного интегрирования. Создание демонстрационнообучающей программы по методам аппроксимации функций многочлены Ньютона Лагранжа интерполяционный многочлен. Создание обучающей программы по WIN PI раздел многопоточные приложения.
43475. Подземная гидромеханика. Методические указания 188 KB
  Фильтрационноемкостные параметры коллекторов Задание 1 Для величины пористости m=30 для 1 варианта и диаметра частиц d=020 мм определить удельную поверхность Sуд фиктивного грунта радиус пор идеального грунта R проницаемость k идеального грунта удельную поверхность и проницаемость реального грунта. Задание 2 Куб с ребром 1м наполнили шарами диаметром 10 см каждый а куб с ребром 1 см точно также уложили шарами диаметром 1 мм каждый.