3874

Чисельний метод розв’язання задач стаціонарної теплопровідності

Практическая работа

Энергетика

Чисельний метод розв’язання задач стаціонарної теплопровідності Умова задачі Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки ...

Украинкский

2012-11-09

202.5 KB

8 чел.

Чисельний метод розв’язання задач стаціонарної теплопровідності

Умова задачі

Використовуючи чисельний метод, визначити розподіл температури в поперечному перерізі довгого стального стержня при кроці розрахункової сітки δ=10мм. На основі вирахуваних локальних значень температур накреслити сімейство інтерпольованих ізотерм , для поперечного перерізу стержня провести лінії теплового потоку.

Поперечний переріз стержня має прямокутну форму з розмірами l1=30мм, l2=40мм. Коефіцієнт теплопровідності матеріалу стержня λ=50 Вт/м∙К.

Схема завдання граничних умов в поперечному перерізі стержня показана на рис.1

                                                                  

 

                      

                                                            


     

    

Рис. 1 Поперечний перетин стержня

           

qс10-5, Вт/м2

tж1,0С

tж2,0С

λ, Вт/мК

α1 ,Вт/м2К

α2,Вт/м2К

l1, мм

l2, мм

0,9

50

75

50

1200

2500

30

40

              

2. ПОБУДОВА РОЗРАХУНКОВОЇ СІТКИ

Дана задача двомірна з розмірами 4030мм. Побудуємо розрахункову сітку з постійним кроком розбиття = 10 мм = Dx = Dy. Диференційне рівняння теплопровідності заміняють рівнянням теплопровідності в кінечних різницях. Для того, щоб в розрахунковій сітці отримати вузлові крапки, що лежать безпосередньо на поверхні тіла, розбиття здійснюють з половинним кроком. Тоді в процесі побудови розрахункової сітки досліджуваної  області отримаємо,  що  елементарні об'єми уздовж меж області будуть удвічі менші (в кутках прямокутника - в чотири рази менше) внутрішніх об'ємів . При цьому серед сукупності вузлових точок розрахункової сітки будуть і такі, які належать бічній поверхні і її ребрам. Всім вузловим крапкам з невідомою температурою привласнимо  свій номер числами 1, 2, 3, 20, оскільки температура в кожній точці буде різниця одна від іншої.

 1 2 3 4                      5

   

 

  

 6 7  8 9 10  

 11 12 13 14 15   

    

16 17 18 19                   16

           

Рис. 2 Схема розрахункової сітки

                                                                                                                              

3. СКЛАДАННЯ РІВНЯНЬ ЕНЕРГОБАЛАНСА ДЛЯ ВУЗЛОВИХ

ТОЧОК СІТКИ

Складаємо рівняння  енергобалансу  для  точок  з  невідомою  температурою. Для  цього   для  кожного  із  обємів тіла вибираємо  вузлуву  точку . Після  цього  переходимо  від  диференціального  рівняння  теплопровідності  до  рівняння  теплопровідності  в  кінцевих   різницях  , для  чого  робимо  заміну   диференціалів  на  кінцеві  прирости.

      

 

                       Qж2,2           

1       Q1,2 2 Q3,2       3

                                        Q7,2

 6     7                  8

 

рис. 3 Схема енергобалансу 2 точки

Точка 1

Точка 2

Точка 3

Точка 4

Точка 5

Точка 6

Точка 7

 

Точка 8

Точка 9

Точка 10

Точка 11

Точка 12

Точка 13

Точка  14

Точка 15

Точка 16

Точка 17

Точка 18

Точка 19

Точка 20

З рівнянь енергобалансу отримаємо таку систему лінійних алгебраїчних рівнянь

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  

4. РОЗВ'ЯЗОК СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ

Для розв’язку даної системи використаємо програмний пакет MS EXEL. Розв’язки рівнянь знаходять за допомогою перемноження матриць.

Вихідна таблиця з коефіцієнтами при відповідних невідомих температурах та вільними членами рівняння.

Табл .1

Коефіцієнти в рівняннях для відповідних вузлових точок при температурах

Вільний член рівняння

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

1

-5

2

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-111

2

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

-75

3

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

-75

4

0

0

1

-5

1

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

-75

5

0

0

0

25

-68,5

0

0

0

0

25

0

0

0

0

0

0

0

0

0

0

-1237,5

6

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

0

0

0

0

-36

7

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

0

8

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

0

0

0

0

9

0

0

0

1

0

0

0

1

-4

1

0

0

1

1

0

0

0

0

0

0

0

10

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

0

0

0

0

0

-600

11

0

0

0

0

0

1

0

0

0

0

-4

2

0

0

0

1

0

0

0

0

0

12

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

0

13

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

0

14

0

0

0

0

0

0

0

0

1

0

0

0

1

-4

1

0

0

0

1

0

0

15

0

0

0

0

0

0

0

0

0

25

0

0

0

50

-112

0

0

0

0

25

-600

16

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

-2

1

0

0

0

-18

17

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

0

-36

18

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

-36

19

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

1

-4

1

0

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

0

0

0

25

-56

-300

При розв’язуванні даної системи отримаємо такі результати:

      табл. 2

t1

115,13

t2

103,66

t3

96,01

t4

89,23

t5

82,47

t6

128,66

t7

116,09

t8

106,09

t9

96,33

t10

87,25

t11

131,35

t12

125,93

t13

115,91

t14

102,77

t15

91,72

t16

144,87

t17

140,39

t18

128,83

t19

107,13

t20

94,13

5. АНАЛІЗ ТЕМПЕРАТУРНОГО ПОЛЯ

На основі розрахованих локальних значень температур, зобразимо температурне поле у поперечному перерізі стержня (рис.3). Для цього накреслимо у масштабі поперечний переріз стержня, відмітимо положення вузлових точок і покажемо значення температур в них, а потім побудуємо з певним вибраним інтервалом сім’ю інтерпольованих ізотерм.

На графіку температурного поля (рис.3) нанесемо лінії теплового потоку ортогонально до ізотерм.

З рисунка видно, що температурне поле спадає справа наліво і зверху  вниз, тому що на правій частині нижньої грані та на нижній половині лівої грані немає теплообміну з навколишнім середовищем, а зверху і справа відбувається теплообмін з рідиною, температура якої менша температури стінки. Також ізотерми густішають в лівому нижньому куті, тому що на малому інтервалі розміщується велика різниця температур. Лінії теплового потоку рідкі у правому верхньому куті, так як ізотерми там менш густіші.

qc=const

15

15

qc=const

qc=const

qc=const


 

А также другие работы, которые могут Вас заинтересовать

66932. Чорнобильська балада 57.5 KB
  Мета. Виховувати почуття співчутливості, критичне ставлення до історичних подій. Розвивати почуття гордості за свій народ. Прищеплювати любов до рідного краю. Обладнання. Стіл, накритий вишитим рушником, свічка, живі квіти, фотографії пожежників, магнітофон, фонограми...
66933. На Чорнобиль журавлі летіли 1.91 MB
  Мета заходу: згадати про трагедію віку — вибух на ЧАЕС, поглибити знання студентів про неї, визначити негативний вплив аварії на стан навколишнього середовища та здоров'я населення; розвивати вміння школярів аналізувати та узагальнювати навчальну інформацію, вміння виразно декламувати...
66934. Christmas in the Wood 49 KB
  Dady: Ok.Sit here and listen attentively. It was winter, December. All people were on Christmas Eve. The snow is falling down…. And there were a beautiful fir-tree in the middle of the "wood ". Some more trees are around it..
66935. Cooking 12.85 MB
  Today we’ll continue speaking about food and cooking. We’ll recollect the constructions there is/are and use these constructions in practice. So we’ll speak English, repeat and learn words, work with grammar, play and do a lot of interesting things.
66936. Ми у космос летимо. Заняття за інтересами 920 KB
  Мета. Закріпити вміння учнів працювати з технікою складання паперу «Орігамі». Виготовити моделі ракет, супутників, гратографії «Сузір’я», геометричну аплікацію, мозаїку «Чумацький шлях». Навчати працювати в групах, в парах та закріплювати вміння працювати з ножицями,...
66937. Рідна земля, живи! Виступ екологічної агітбригади 76.5 KB
  Мета: донести до людей значення екологічних проблем, зокрема, характерних для рідного краю; залучати учнів до агітаційної роботи з даного питання; виховувати любов до планети Земля, сприяти хоча б частковому вирішенню екологічної ситуації.
66938. Даруйте радість людям – і стане світ багатшим 53.5 KB
  Виховувати в учнів почуття доброти чуйності милосердя поваги до людей; формувати активну життєву позицію яка проявляється в дієвій допомозі людям; формувати в учнів уміння формулювати судження виховувати високі моральні якості. Добро спішіть творити люди. Живіть добро звершайте Та нагород за це не вимагайте.
66939. «Сумні дати серця» (сторінками життя Василя Стефаника) 120.5 KB
  Мета:познайомити учнів із життєвим шляхом українського письменника Василя Стефаника, розкрити трагізм його життя; розвивати чуйність, увагу, спостережливість; виховувати почуття патріотизму, любові до України, її синів. У додатку – презентація «Надто добрий знавець народної мужицької душі (життя і творчість В.Стефаника)».
66940. Професія педагога: «за» і «проти» 38.5 KB
  Слово суддям заключне слово класного керівника хід класної години Класний керівник: Сьогодні моє слово до вас мої вихованці. На нашому ринзі незвичайна і дуже відповідальна зустріч зустріч захисників і противників професії педагога. У правому куті команда захисників професії.