38930

Линейные цифровые фильтры и их характеристики

Контрольная

Физика

Под термином цифровая фильтрация обычно понимают локальную цифровую обработку сигнала скользящим окном или аппертурой. Для каждого положения окна за исключением возможно небольшого числа крайних точек выборки выполняются однотипные действия которые определяют так называемый отклик или выход фильтра. Если действия определяющие отклик фильтра не изменяются в процессе перемещения по выборке сигнала то соответствующий фильтр называется стационарным. Различают линейную и нелинейную цифровую фильтрацию.

Русский

2013-09-30

47 KB

13 чел.

Линейные цифровые фильтры и их характеристики.

Под термином "цифровая фильтрация" обычно понимают локальную цифровую обработку сигнала скользящим окном или аппертурой. При этом полагают, что размер окна много меньше размера выборки обрабатываемого фрагмента сигнала. Для каждого положения окна, за исключением, возможно, небольшого числа крайних точек выборки, выполняются однотипные действия, которые определяют так называемый отклик или выход фильтра. Если действия, определяющие отклик фильтра, не изменяются в процессе перемещения по выборке сигнала, то соответствующий фильтр называется стационарным. В противном случае фильтр называется нестационарным. Различают линейную и нелинейную цифровую фильтрацию.

Линейная цифровая система описывается уравнением свертки

,

(2.1)

где x[n] - входная выборка, y[n] - выходная выборка, - импульсная характеристика системы. Передаточная функция линейной цифровой системы определяется выражением

,

(2.2a)

где

- z-преобразования входной и выходной выборок сигнала. Если умножить обе части равенства (2.1) на и просуммировать по n, можно получить выражение для передаточной функции линейной цифровой системы в виде

,

(2.2б)

где - импульсная характеристика системы.

Необходимое и достаточное условие устойчивости линейной цифровой системы часто записывается в виде неравенства для импульсной характеристики системы

.

(2.3)

Линейная цифровая система является физически реализуемой, если =0 при l<0.

Цифровые устройства, выполняющие преобразования вида (2.1) называются линейными цифровыми фильтрами. Линейный цифровой фильтр является финитной линейной цифровой системой, и, в общем случае, описывается уравнением

,

(2.4)

где {, } - коэфициенты фильтра. Обычно линейные цифровые фильтры подразделяют на фильтры низких частот, фильтры высоких частот, полоснопропускающие и полоснозаграждающие (режекторные) фильтры, амплитудные и фазовые фильтры-корректоры, гребенчатые фильтры и др. Первые четыре типа фильтров называют основными или базовыми типами фильтров. По своей конструкции линейные цифровые фильтры разделяют на рекурсивные и нерекурсивные (трансверсальные) фильтры. Коэфициенты трансверсальных фильтров или фильтров с конечной импульсной характеристикой (КИХ-фильтров) удовлетворяют условиям:

{=1, =0 для всех i#0}.

Цифровые фильтры, которые не являются трансверсальными, называются рекурсивными или фильтрами с бесконечной импульсной характеристикой (БИХ-фильтрами).

Передаточная функция линейного цифрового фильтра (2.4) имеет вид

.

(2.5)

Многочлены стоящие в числителе и знаменателе этого выражения можно представить в виде произведения и переписать передаточную функцию линейного цифрового фильтра (2.4) в следующем виде

.

(2.6)

Условие устойчивости линейного цифрового фильтра обычно записывают в виде неравенства:

,

i=0,1,...,I , т. е. полюса передаточной функции цифрового фильтра должны лежать внутри окружности единичного радиуса. Положение нулей передаточной функции {} на устойчивость фильтра не влияет, однако условие

|| ‹ 1, l=0,1,...,L 

определяет минимально-фазовый цифровой фильтр.

Частотная характеристика цифрового фильтра H(w)соответствует передаточной функции фильтра H(z) при , где T - интервал дискретизации, w = 2*3.14...*f - круговая частота. Поскольку экспоненциальная функция мнимого аргумента является периодической функцией частоты с периодом W = 2*3.14.../T, то частотная характеристика цифрового фильтра H(w) также является периодической функцией частоты с периодом W.

Вычисление коэфициентов цифрового фильтра удовлетворяющего заданным условиям принято называть проектированием (синтезом) фильтра, а устройство или программу, которая осуществляет преобразование цифровых сигналов - реализацией фильтра.

Постановка задачи проектирования цифрового фильтра следующая: априори задан модуль или квадрат модуля желаемой частотной характеристики фильтра. Требуется найти коэфициенты фильтра, квадрат модуля частотной характеристики которого удовлетворительно аппроксимирует квадрат модуля желаемой частотной характеристики при заданных ограничениях. В частности, такими ограничениями могут являться: тип фильтра, число коэффициентов (порядок) фильтра, ошибка аппроксимации и др. Ниже рассматриваются способы конструирования некоторых типов цифровых фильтров.


 

А также другие работы, которые могут Вас заинтересовать

11640. Исследовать закономерность соударений тел с помощью компьютерного процесса забивания сваи в грунт 78 KB
  Цель работы: исследовать закономерность соударений тел с помощью компьютерного процесса забивания сваи в грунт. Мы исследовали закономерности соударения тел с помощью компьютерного моделирования процесса забивания сваи в грунт.
11641. Измерение емкости конденсатора. Определение неизвестных сопротивлений проводников (катушек) при помощи мостика Уитстона 93.5 KB
  Измерение емкости конденсатора Цель работы: Определение неизвестных сопротивлений проводников катушек при помощи мостика Уитстона. Схема принципиальной установки: сопротивления Г гальванометр ...
11642. Измерение электродвижущей силы источника постоянного тока 32.5 KB
  Отчет По лабораторной работе №23 Измерение электродвижущей силы источника постоянного тока Цель работы: Измерение электродвижущей силы источника постоянного тока методом компенсации. Теоретическое введение. Электрическим током называется порядо...
11643. Определение кривой намагничивания железа 63.5 KB
  Отчет По лабораторной работе №28 Определение кривой намагничивания железа Цель работы: Ознакомление с характеристиками магнитных свойств вещества и определение зависимости магнитной индукции и магнитной проницаемости ферромагнитного образца от напряжен
11644. Исследование гальванометра магнитоэлектрической системы. 37.5 KB
  Отчет По лабораторной работе №29 Исследование гальванометра магнитоэлектрической системы Цель работы: экспериментальное измерение основных характеристик гальванометра магнитоэлектрической системы. Теоретическое введение: В электрических приборах м
11645. Измерение потерь напряжения в проводах. 108 KB
  Измерение потерь напряжения в проводах Цель работы: Ознакомление с общими принципами передачи электрической энергии на большие расстояния и определение потерь напряжения в моделях электрических линий. Теоретическое введение. Передача электрической эне...
11646. Определение удельного сопротивления Резистивного провода. 42.5 KB
  Определение удельного сопротивления Резистивного провода Цель работы : Измерение сопротивления техническим методом и определение удельного сопротивления резистивного провода. Установка : измерение R техническим методом с точным измерением силы тока...
11647. Разработка технологического процесса механической обработки детали типа Вал 43.25 KB
  2 Практическая работа №1Разработка технологического процесса механической обработки детали типа Вал 1.Определение типа производства Определяем тип производства по [3 стр. 6 табл. 1.1]: Исходя из массы детали 1 кг и объема производства 3000 шт/год...
11648. Разработка генератора линейной псевдослучайной последовательности на сигнальном процессоре семейства TSM320C54xx 158.75 KB
  ОТЧЁТ по лабораторной работе №1 Разработка генератора линейной псевдослучайной последовательности на сигнальном процессоре семейства TSM320C54xx Цель работы Изучение процесса создания программ линейных генераторов псевдослучайной последовательности ГПСП н