38936

Структурная схема канала записи сигналов яркости. Структурная схема записи канала сигнала цветности

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Структурная схема записи канала сигнала цветности. Канал яркости Частотномагнитная ЧМ запись полного цветового телевизионного сигнала на магнитную ленту осуществляется посредством ЧМ модуляции несущей непосредственно этим сигналом. Несмотря на то что частота несущей выбирается так чтобы она лишь незначительно превышала верхнюю частоту передаваемого сигнала ширина полосы записываемых частот все же почти в два раза превышает полосу частот видеосигнала.

Русский

2013-09-30

279 KB

8 чел.

МЗВВИ 3

Структурная схема канала записи сигналов яркости. Структурная схема записи канала сигнала цветности.

Канал яркости

Частотно-магнитная (ЧМ) запись полного цветового телевизионного сигнала на магнитную ленту осуществляется посредством ЧМ модуляции несущей непосредственно этим сигналом. Несмотря на то, что частота несущей выбирается так, чтобы она лишь незначительно превышала верхнюю частоту передаваемого сигнала, ширина полосы записываемых частот все же почти в два раза превышает полосу частот видеосигнала.

В бытовых ВМ полный цветовой видеосигнал перед записью с помощью фильтров предварительно разделяется на два сигнала: яркости Y и цветности С. Сигнал яркости выделяется фильтром нижних частот с полосой пропускания 3...3.5 МГц и поступает в частотный модулятор, где он преобразуется в ЧМ сигнал яркости с частотой несущей 4-5 МГц. Для стандарта 625 строк/50 полей при изменении уровня яркости передаваемого изображения от уровня вершин синхроимпульсов до номинального уровня белого принято изменение частоты ЧМ сигнала от 3.8 ± 0.1 до 4.8±0.1 МГц.

Сигнал цветности на поднесущей выделяется полосовым фильтром с частотой 4.43 МГц и полосой пропускания около 1 МГц и преобразуется в сигнал с низкой частотой поднесущей. В системе PAL выделенный сигнал цветности переносится на частоту 626,953 кГц, в системе SECAM - на частоты 654,322 и 810,572 кГц (в универсальных ВМ, предназначенных для записи и воспроизведения сигнала по системе PAL и допускающих запись и воспроизведение цветных программ в SECAM). В ВМ, специально разработанных для записи и воспроизведения сигнала системы SECAM, сигнал цветности переносится на частоту 1.10156 МГц в "красных" строках и на частоту 1.0625 МГц в "синих" строках. Перенесенный на низкочастотную поднесущую сигнал цветности пропускается через фильтр нижних частот, выделяющий полезный сигнал, и затем смешивается с ЧМ сигналом яркости. Только после этого оба сигнала записываются на ленту. На рис. 2.14 показана структурная схема с основными функциональными элементами канала записи синхронизирующей и яркостной составляющих телевизионного сигнала.

Входной видеосигнал поступает на вход устройства автоматической регулировки усиления (АРУ), где нормируется по амплитуде от уровня вершины синхроимпульсов до уровня белого. В современных бытовых ВМ в основном применяются ключевые схемы АРУ, стабилизирующие амплитуду синхроимпульсов и, в пропорциональном к ней отношении, размах полного телевизионного сигнала. Целесообразность такого решения следует из необходимости сохранения в процессах записи-воспроизведения прежде всего синхронизирующей составляющей полного телевизионного сигнала, так как от нее зависит стабильность работы САР ВМ и синхронизации телевизионного приемника. Принцип реализации ключевой АРУ заключается в формировании положительных импульсов, инвертированных относительно строчного синхронизирующего импульса (ССИ) и задержанных на время его длительности. Амплитуда полученных импульсов несколько больше уровня белого на выходе фильтра 2. С выхода формирователя 6 эти импульсы поступают на сумматор 7, где добавляются к записываемому видеосигналу, и в детектор 3 , управляющий коэффициентом усиления усилителя 1. В результате АРУ в целом оказывается чувствительной только к изменениям амплитуды входных ССИ. Поэтому в схемотехническую реализацию современных устройств АРУ, кроме усилителя 1 с управляемым коэффициентом усиления, всегда входит селектор строчных импульсов 5. Записываемый сигнал разделяется фильтрами 2 и 18 на яркостную и цветовую составляющие.

Сигнал цветности.

Структурная схема канала записи сигнала цветности бытового ВМ формата VHS показана на рис. 219. Здесь из полного цветового видеосигнала выделяется только сигнал цветности, который далее преобразуется в сигнал с более низкой частотой поднесущей, и суммируется с ЧМ сигналом яркости. Полученный суммарный сигнал и записывается на ленту.

На вход канала записи поступает полный цветовой видеосигнал. Этот сигнал усиливается усилителем с АРУ, расположенным в канал записи сигнала яркости, и затем подается в последующие цепи канала записи. Полосовым фильтром 1, включенным после входного усилителя с АРУ, выделяется сигнал цветности на поднесущей частоте из полного видеосигнал.

Уровень сигнала стабилизируется с помощью автоматического регулятора уровня цветности 2, включенного после полосового фильтра и работающего по вспышкам сигнала цветовой синхронизации. Для их выделения с помощью селектора синхроимпульсов формируются ключевые импульсы, совпадающ е по времени с импульсами вспышек «пробирующие импульсы, BGP)

Обеспечение постоянного уровня сигнала цветности осуществляется автоматически. Для этого выделенные пакеты немодулированной цветовой поднесущей (вспышки) детектируются по амплитуде и используются для управления коэффициентом передачи регулируемого усилителя. Для улучшения отношения сигнал/шум при воспроизведении сигнал цветовой вспышки постоянного уровня, поступающий с автоматического регулятора уровня сигнала цветности усиливается усилителем сигнала цветовой синхронизации 3 на 6 дБ (рис. 2.19). После усилителя цветовой вспышки сигнал цветности поступает в основной преобразователь частоты 5. Селектором 4 из выходного сигнала устройства АРУ 1 выделяются импульсы Fh строчной синхронизации, частота которых умножителем 7 увеличивается в 40 раз.

Полученный сигнал через управляемый фазовращатель 8 , где его фаза коммутируется в каждой строке на 90° , поступает во вспомогательный преобразователь частоты 9, где смешивается с сигналом гетеродина 11, частота которого стабилизирована кварцем. Полосовым фильтром 12 выделяется суммарная частотная составляющая выходного сигнала преобразователя 9, которая и используется в качестве опорной частоты.

Из выходного сигнала основного преобразователя частоты 5 фильтром нижних частот 6 выделяется сигнал разностной частоты, который и представляет собой сигнал цветности , перенесенный в область более низких частот.

В режиме воспроизведения сигнал кварцевого генератора синхронизируется сигналом цветовой вспышки, который выделяется из записываемого сигнала ключом SW. В режиме записи цепь автоматической подстройки фазы (детектор ФАПЧ 10) генератора 11 отключена.

Перенесенный в область более низких частот, сигнал цветности поступает в смеситель сигналов яркости и цветности, где суммируется с ЧМ сигналом яркости. В результате сложения получается сигнал, предназначенный для записи.

Этот сигнал корректируется и усиливается усилителем записи 14 и через электронный коммутатор поочередно подается на видеоголовки ВГ1 и ВГ2, которыми и производится запись.


 

А также другие работы, которые могут Вас заинтересовать

80168. Аварийные режимы, обусловленные разуплотнением первого контура 298 KB
  В связи с тем, что размер и место утечки является фактором, ограничивающим нормальную работу реакторной установки и вспомогательных систем (например: системы ТК, системы ТF),возможность работы реакторной установки на мощности определяется для каждого конкретного случая.
80169. Максимальная проектная авария – разрыв трубопровода первого контура большого диаметра 131 KB
  В результате выброса горячего теплоносителя давление и активность под оболочкой резко возрастают. С момента разрыва по сигналу аварии происходит запуск механизмов систем обеспечения безопасности. В случае обесточивания секций надежного питания
80170. Аварийные режимы, обусловленные неисправностями предохранительных клапанов компенсатора давления 112 KB
  6 Когда давление в первом контуре уменьшится менее 160 кгс см2 при условии открытого положения УР21S09 закроется УР21S08 что приведет к закрытию главного клапана УР21S01 НУ12 для бл. Когда давление в первом контуре уменьшится до 155 кгс см2 примерно через 35 сек. 7 Давление в УР20W01 увеличивается но не достигнет точки разрыва мембраны 62 кгс см2. 10 Возможно срабатывание АЗ РУ вследствие снижения давления над активной зоной ниже 148 кгс см2.
80171. Тяжелые аварии на АЭС 469 KB
  Тяжелые аварии на АЭС План лекции 1. Ошибки в действиях оперативного персонала при аварии на АЭС ТриМайлАйленд и ЧАЭС. До Чернобыльской аварии случившейся через семь лет авария на АЭС ТриМайлАйленд считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США в ходе неё была серьёзно повреждена активная зона реактора часть ядерного...
80172. Снятие АЭС с эксплуатации 576 KB
  Основные термины и определения Термин Определение Прекращение эксплуатации Заключительный этап эксплуатации энергоблока который реализуется после принятия решения о снятии его с эксплуатации а также в течение которого он приводится к состоянию когда ядерное топливо отсутствует на его территории или находясь в пределах этой территории размещено только в хранилищах отработавшего ядерного топлива предназначенных для долгосрочного безопасного хранения Окончательное закрытие Этап снятия энергоблока с эксплуатации в течение...
80174. Эксплуатация АЭС 148.5 KB
  Вводная лекция по дисциплине Эксплуатация АЭС. Цель и задачи дисциплины Эксплуатация АЭС. Характеристика системы эксплуатации АЭС. Изучить и законспектировать основные термины и определения эксплуатации АЭС.
80175. Перевод энергоблока в состояние «Холодный останов» после перегрузки топлива 116 KB
  Окончание перегрузки топлива означает что полностью выполнены Программа и рабочий график перемещения ТВС Программа проведения контроля герметичности оболочек ТВЭЛ ТВС и другие программы работ запланированные на период разупотнения первого контура. Исходное состояние технологических систем перед подготовкой к пуску следующее: в работе один из активных каналов САОЗ низкого давления системы планового и аварийного расхолаживания и не менее чем еще один канал работоспособный; в работе два канала системы технической воды...
80176. Перевод энергоблока из состояния «Холодный останов» в состояние «Горячий останов» 189 KB
  Состояние систем и оборудования ЭБ при подготовке к разогреву 1го контура. Разогрев первого контура до температуры гидроиспытаний. Здесь были рассмотрены процессы дозаполнения первого контура подъем давления в первом контуре до 5 и 35 кгс см2 а также создание азотной подушки в компенсаторе давления. Перевод ЭБ в состояние горячий останов является важной технологической операцией так как при этом происходит включение ГЦН и разогрев первого контура до номинальных параметров.