38948

Физические процессы взаимодействия лазерного излучения с веществом

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Физические процессы взаимодействия лазерного излучения с веществом. Действия лидаров для исследования атмосферы основано: лазерное излучение распространяясь в реальной атмосфере оставляет в ней след вызванный взаимодействием фотонов лазерного излучения с атомами и молекулами газов частицами аэрозолей и неоднородностями атмосферы обусловленными турбулентными вихревыми движениями воздуха. Это взаимодействие прежде всего проявляется в упругом и неупругом рассеянии лазерного излучения в атмосфере при которых в частности образуется...

Русский

2013-09-30

558 KB

7 чел.

МЛДЗ

5. Физические процессы взаимодействия лазерного излучения с веществом.

 

Действия лидаров для исследования атмосферы основано: лазерное излучение, распространяясь в реальной атмосфере, оставляет в ней «след», вызванный взаимодействием фотонов лазерного излучения с атомами и молекулами газов, частицами аэрозолей и неоднородностями атмосферы, обусловленными турбулентными (вихревыми) движениями воздуха.

Это взаимодействие, прежде всего, проявляется в упругом и неупругом рассеянии лазерного излучения в атмосфере, при которых в частности образуется лазерные эхо-сигналы обратного рассеяния от исследуемых участков атмосферы, что следует из формулы для пиковой мощности принимаемого эхо сигнала обратного рассеяния:

-  - пиковая мощность зондируемого импульса лазерного излучения, где на выходе лазера - передающее устройство лидара

- - коэффициент пропускания лазерного излучения передающей оптической системы

-  - коэффициент пропускания лазерного излучения приемным объективом

-  - коэффициент пропускания лазерного излучения оптическим фильтром в приемной оптической системе

-  - диаметр входного зрачка приемного объектива

-  - толщина исследуемого слоя атмосферы (ΔR=и) при длительности зондируемого импульса τи, что соответствует разрешающей способности лидара по дистанции

-  – расстояние от лидара до слоя атмосферы

-  - коэффициент объемного рассеяния лазерного излучения в исследуемом слое атмосферы

-  - модуль вектора индикатрисы рассеяния лазерного излучения в исследуемом слое атмосферы в обратном направлении при φ=π (рад)

- коэффициент пропускания лазерного излучения атмосферой на удвоенной дистанции R от лидара до исследуемого слоя атмосферы

-  - коэффициент ослабления лазерного излучения в атмосфере на трассе до исследуемого слоя за счет рассеяния и поглощения атмосферными газами

-  - коэффициент ослабления за счет поглощения атмосферными газами

-  - коэффициент ослабления за счет рассеяния атмосферными газами

Выражение для  является энергетическим уравнением лидаров для исследования атмосферы, где информация о параметрах и свойствах атмосферы содержится в ,  и

Произведение:

-  - площадь эффективного поперечного сечения центров упругого молекулярного рассеяния зондирующего лазерного излучения молекулами газовых компонент атмосферы

-  - площадь эффективного поперечного сечения центров упругого аэрозольного рассеяния зондирующего лазерного излучения аэрозолями в атмосфере земли

-  - площадь эффективного поперечного сечения центров неупругого резонансного или комбинационного рассеяния зондирующего лазерного излучения газовыми компонентами атмосферы

-  - концентрации молекул, аэрозолей и компонент атмосферы, вызывающих неупругое рассеяние в исследуемом слое атмосферы

Регистрируя эхо-сигнал обратного упругого молекулярного или аэрозольного рассеяния можно определить прозрачность атмосферы. Установлено, что при уменьшении оптической плотности атмосферы, длительность переднего фронта сигнала возрастает. Деформация импульса лазерного излучения в рассеивающей атмосфере предназначена для использования в лидарах для определения метеорологической дальности видимости на аэродромах или в морских акваториях. В таких лидарах предусмотрены измерения моментов максимума интенсивности импульса обратного упругого рассеяния Pор по сравнению с моментом максимума зондирующего импульса Pи, длительности импульса обратного рассеяния по уровню 0,5 от τmax 0,5 Pор) и крутизны фронтов импульса обратного рассеяния (τφ1, τφ2).

Исследования прозрачности атмосферы позволяют так же изучать загрязненность атмосферы и определять пространственное распределение загрязняющих веществ. Объемный коэффициент рассеяния  измеренный при это м с помощью лидаров в большинстве случаев является суммой коэффициентов аэрозольного и молекулярного рассеяния.

Расширение информации о свойствах атмосферы и ее составе может быть получено при использовании эффектов резонансного или комбинационного неупругого молекулярного рассеяния лазерного излучения газами атмосферы.

Сущность резонансного рассеяния лазерного излучения: эти компоненты селективно поглощают лазерное излучение, когда длинна волны λи или частота νи=с/ λи совпадает с линией или полосой поглощения молекул газовых компонент атмосферы, а поглощенная энергия, спустя некоторое время, спонтанно переизлучается в пространство (τпи=10-14 сек).

Частота νii=c/ νi) переизлученного эхо-сигнала может отличаться от νии) поглощенного зондирующего лазерного излучения.

Комбинационное рассеяние лазерного излучения упрощенно можно рассматривать как результат взаимодействия фотонов зондирующего лазерного излучения с Ekhνи с молекулами газовых компонент атмосферы, способными принимать или отдавать ΔEihνi.

Если лазерное излучение взаимодействует с молекулой, находящейся в невозбужденном энергетическом состоянии, то оно отдает молекуле часть энергии и превращается в излучение с меньшей энергией фотонов:

hν’i= hνи-hνi и соответственно с меньшей частотой ν’i= νиi – стоксово излучение.

Если лазерное излучение взаимодействует с молекулой, находящейся в возбужденном колебательно-вращательном состоянии, т.е. обладающей hνи, то оно забирает из молекулы эту энергию и превращается в излучение с большей энергией фотонов: hν’i= hνи+hνi; ν’i= νиi – антистоксово излучение.

В результате рассмотренных эффектов в спектре эхо-сигнала обратного рассеяния кроме частоты зондирующего лазерного излучения νи за счет упругого рассеяния присутствует ряд линий резонансного или колебательного рассеяния.

Эти линии смещены относительно νи зондирующего лазерного излучения по шкале частот на определенные величины, обусловленные вынужденными энергетическими переходами молекул.

Поскольку собственные резонансные частоты молекул однозначно определяются их свойствами, то по смещению спектральных линий можно судить о наличии в атмосфере различных газовых компонент (и загрязняющих), а по интенсивности – о количестве вещества.

В лидарах для исследования атмосферы применяются импульсные лазеры с λи=0,3-14 мкм, т.к. молекулы практически всех веществ и загрязняющих газовых компонент атмосферы имеют в этом диапазоне длин волн вынужденные энергетические переходы.

Однако не используются участки спектра оптического излучения: νи=2,5÷2,9; 4,2÷4,4; 5,5÷7,5; 14-16 мкм в связи с очень сильным поглощением оптического излучения на этих длинах волн углекислым газом и парами воды в атмосфере.

С помощью лидаров можно определить концентрацию различных газовых компонент в атмосфере Земли от 10-6÷10-3 отн. ед.


 

А также другие работы, которые могут Вас заинтересовать

65527. Особливості саморегуляції курсантів у період адаптації до навчання в цивільному вищому навчальному закладі 221 KB
  Проблема психічної саморегуляції курсантів у період адаптації до навчання в цивільному вищому навчальному закладі є актуальною для підготовки військових фахівців у системі інтегрованої вищої освіти яка дозволяє разом із цивільною спеціальністю опановувати військовим фахом.
65528. ТРИВИМІРНЕ МОДЕЛЮВАННЯ У ПРОМИСЛОВОМУ ДИЗАЙНІ УКРАЇНИ КІНЦЯ XX – ПОЧАТКУ XXI СТОЛІТТЯ 187 KB
  За цих умов набуває актуальності проблема підготовки фахівців з якісно новим рівнем професійного мислення основаного на знанні компютерних інструментів і сучасних технологій передусім тривимірного моделювання умінням правильного вибору компютерної системи для розробки дизайнерського продукту.
65529. АДМІНІСТРАТИВНО-ПРАВОВА ОХОРОНА АТМОСФЕРНОГО ПОВІТРЯ 168.5 KB
  Одним із таких чинників що несприятливо впливають на здоровя людей є забруднення атмосферного повітря спричинене викидами від стаціонарних і пересувних джерел а також у результаті транскордонного перенесення повітряних мас.
65530. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПЕРЕХІДНИХ ПРОЦЕСІВ В БАГАТОМАШИННИХ ШАХТНИХ ЕЛЕКТРОТЕХНІЧНИХ КОМПЛЕКСАХ 331.5 KB
  Зокрема це стосується випадку захисного вимкненні електромережі технологічної дільниці шахти в разі наявності небезпечного струму витоку на землю. Збільшення рівнів та інтервалів існування електрорушійної сили ЕРС вибігу двигунів через збільшення потужності останніх та ємності...
65531. СИСТЕМНІ ТА ФІЗИКО-МЕХАНІЧНІ ОСНОВИ ПРОЕКТУВАННЯ РОЗПУШУВАЧІВ ҐРУНТУ 411.5 KB
  Розробка комплексу нових знарядь можлива при системному підході тобто при розгляді обробітку ґрунту як доповнення до природних ґрунтоутворюючих процесів на основі більш повного урахування механічних фізичних і біологічних властивостей ґрунту.
65532. Створення адаптивних засобів обліку і аналізу якості електроенергії 391 KB
  Обсяг спожитої електричної енергії фіксується електролічильниками а її якість контролюється приладами для вимірювання показників якості. Подана робота присвячена питанням розробки адаптивних засобів обліку електроенергії вимірювання показників її якості та відтворення...
65533. МЕТОДИ, МОДЕЛІ ТА ЗАСОБИ ПРОЕКТУВАННЯ І УПРАВЛІННЯ БІЗНЕС-ПРОЦЕСАМИ ДЛЯ ОРГАНІЗАЦІЙНО-ТЕХНІЧНИХ ОБ’ЄКТІВ УПРАВЛІННЯ 721 KB
  Сучасне процесне управління підприємствами і організаціями включає в себе управління гнучкими бізнеспроцесами орієнтованими на користувача і мінливими під впливом внутрішніх і зовнішніх чинників.
65534. МАЛЕ ПІДПРИЄМНИЦТВО В СИСТЕМІ РЕГІОНАЛЬНОГО РОЗВИТКУ 322 KB
  Хоч протягом усього пeрiоду ринкових рeформ в eкономiчнiй лiтeртурi бгто увги придiлялося проблeмм розвитку в Укрїнi млого бiзнeсу лe його стн всe щe злишється нeздовiльним. Проблeм полягє нвiть нe в кiлькiсних прмeтрх функцiонувння цiєї сфeри якi поступово полiпшуються нсмпeрeд у структурi вiтчизняного...
65535. Інформаційна технологія синтезу моделей систем управління автоматизованими процесами 1.05 MB
  При створенні нових інформаційних технологій ІТ сучасні компютери та різні спеціалізовані математичні моделі слугують фундаментом побудови нових методів перетворення інформації для складних систем управління ССУ.