38956

Общая методика выполнения процедуры ДС.

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

с известным приближением определяется интегральной сверткой: 1 где момент времени в который определяется величина выходного сигнала; сигналы на входе и выходе соответственно; импульсная характеристика линейного элемента. При проектировании известными являются входной сигнал а также...

Русский

2013-09-30

167.5 KB

2 чел.

Общая методика выполнения процедуры ДС. Методические погрешности (нарушение временного масштаба, междупериодная интерференция)

  Сигнал на выходе широкого класса элементов ОЭС (частотных фильтров, линейных высокочастотных, полосовых и низкочастотных усилителей, операционных усилителей, приемников оптического излучения и т.п.) с известным приближением определяется интегральной сверткой:

                                                          ,                                                           (1)

где  - момент времени, в который определяется величина выходного сигнала; ,  - сигналы на входе и выходе, соответственно;  - импульсная характеристика линейного элемента.

  При проектировании известными являются входной сигнал , а также желаемый вид выходного сигнала , искомой – импульсная характеристика . Поиск вида функции  и значений ее параметров из уравнения (1) определяет содержание процедуры синтеза линейного элемента.

  Если даны две исходные последовательности значений g(k) и h(k) из N членов каждая, то дискретная свертка (ДС) определяет результирующую последовательность y(m) из N членов в соответствии с выражением:

                                                                                         (2)

  В этих выражениях  и  – номера значений исходной и результирующей последовательности, соответственно.

  При автоматизированном расчете сигнала на выходе линейного элемента последовательность g(k) трактуется как отсчеты входного сигнала, последовательность h(k) – отсчеты импульсной характеристики линейного элемента, а результирующая последовательность y(m) – как отсчеты выходного сигнала.

  При переходе к автоматизированному проектированию необходимо входной сигнал и импульсную характеристику ограничить некоторым временным интервалом, а затем дискретизировать их – представить в виде последовательности отсчетов g(i) и h(i), следующих с шагом Δt. Также необходимо заменить интеграл конечной суммой. В результате, из выражения (1) получаем:

                                                          ,                                                        (3)

где ; s(m) – последовательность отсчетов выходного сигнала в моменты времени, следующие с шагом Δt.

  Из сравнения выражений (2) и (3) следует:

                                                                   ,                                                                 (4)

где y(m) – результирующая последовательность дискретной свертки.

  Таким образом, вычисление отсчетов выходного сигнала возможно с использованием операции дискретной свертки.

  При этом предполагается, что импульсная характеристика линейного элемента ограничена во времени (или асимптотически приближается к оси времени).

  Расчет включает два этапа: предварительный и основной.

  На предварительном этапе вычисления проводятся в следующей последовательности.

  1.  По методике расчета параметров операции дискретного преобразования Фурье (ДПФ) определяется величина шага дискретизации входного сигнала Δt1 и импульсной характеристики Δt2.
  2.  Выбирается единый шаг дискретизации Δt исходя из условия: .
  3.  По методике расчета параметров операции ДПФ определяются интервалы ограничения T1 и T2 входного сигнала и импульсной характеристики, затем вычисляется соответствующее количество отсчетов: ; .
  4.  Формируются дискретные последовательности отсчетов входного сигнала и импульсной характеристики (рис. 1).

, k = 0, …, N1 – 1;  , l = 0, …, N2 – 1;

  Дальнейшие расчеты определяются методом вычисления дискретной свертки.

  В частности, для вычисления дискретной свертки разработан метод прямой свертки, метод вычисления в частотной области и ряд других.

Рис. 1. Последовательность отсчетов сигнала и импульсной характеристики

Метод прямой свертки

  

  Массив h(l) отсчетов импульсной характеристики преобразуется в массив h(-l). Фактически выполняется инверсия отсчетов импульсной характеристики: отсчеты переставляются так, чтобы первый отсчет занял позицию последнего, второй – предпоследнего и т.д. (рис. 2).

  Затем на основе последовательности отсчетов входного сигнала g(i) формируется расширенная последовательность g0(k) длиной N1+2N2 отсчетов. При этом в начало и в конец исходной последовательности добавляется по N2 нулевых отсчетов (рис. 2, а, в).

  Выполняется ДС по выражению (2), при этом массив h(-l) пошагово вдвигается внутрь массива g0(k), начиная с положения ‘вне’ массива g(i) (слева). На каждом шаге выполняется перемножение отсчетов в области перекрытия массивов и их суммирование. Этот процесс продолжается до перемещения массива h(-l)  в положение ‘за’ массив g(i) (справа). Количество слагаемых в скользящей сумме N=N2, номера отсчетов результат y(m) изменяются в пределах m=1,…,N3 (рис.2, в). В результате будет получено количество отсчетов, определяемое выражением: .

Рис. 2. Вычисление дискретной свертки

  Следует отметить, что в случае периодического и бесконечного апериодического сигналов возникает методическая погрешность: результирующие отсчеты, полученные на начальной и завершающей стадии, будут ошибочными. Для уменьшения погрешности в случае апериодического сигнала следует выбирать интервал ограничения по соотношению:  , где k = 8..10 для сигналов, заданных на (-∞;+∞); k = 4..5 – для сигналов, заданных на [0;+∞). В случае периодического сигнала интервал ограничения должен быть кратным целому числу m периодов T0 сигнала: .

Метод свертки в частотной области

  Основан на том, что спектр сигнала на выходе линейного элемента равен произведению спектров входного сигнала и импульсной характеристики элемента. Отсчеты выходного сигнала определяется через обратное ДПФ от найденного спектра. Так как в алгоритме используется ДПФ, то при определении количества отсчетов надо учесть условие N=2M. Этот алгоритм обладает меньшей трудоемкостью по сравнению с методом прямой свертки, зато имеет методическую погрешность. В случае бесконечного апериодического входного сигнала или сигнала в виде ограниченного импульса возникает эффект “междупериодной интерференции”, поскольку дискретные сигналы обрабатываются при ДПФ так, как если бы они были периодическими. Анализ эквивалентной свертки в пространстве сигнала показывает, что при недостаточной длине (или отсутствии) защитных нулевых промежутков в массивах входного сигнала и импульсной характеристики отсчеты последней при выполнении операции свертки захватывают отсчеты соседнего периода сигнала. Для устранения этого эффекта длина каждого из массивов-сомножителей должна быть не меньше N3=N2+N1-1, и, также, N=2M, NN3.

  Однако для бесконечного апериодического сигнала этот эффект не устраним. Возможно только уменьшить его влияние на точность результата:

- задать сигнал на интервале , выполнить операцию ДС и вырезать правые (?) точки.

- задать сигнал на интервале , тогда итоговая ошибка не будет превышать нескольких процентов.  

  При использовании алгоритма ДС следует помнить также, что с помощью свертки синтезируется линейный элемент только с конечной импульсной характеристикой, позволяющей аппроксимацию ограниченной по аргументу функцией.


 

А также другие работы, которые могут Вас заинтересовать

48963. Свойства 4−фенил−5,6−ди(этоксикарбонил)−3,4−ди− гидропиримидин−2(1Н)−на 1.72 MB
  Образуется при реакции бензальдегида мочевины и диэтилового эфира 2−оксобутандиовой кислоты в кислой среде. В данном механизме предпологается для подобной реакции три возможных промежуточных соединения образующихся из исходных веществ: бензальдимочивена диэтиловый эфир 2−карбамидобут−2−ендиовой кислоты диэтиловый эфир...
48964. Проект установки для наплавлення 1.46 MB
  Наплавлення – це процес нанесення за допомогою зварювання шару металу на поверхню виробу. Шляхом наплавлення можна отримати вироби зі зносостійкими жароміцними антифрикційними властивостями. Наплавлення застосовують при виготовленні нових та відновленні зношених деталей. При ремонтному відновленні наплавлення ефективне завдяки тому що відновлена деталь часто коштує в декілька разів менше нової деталі і при правильному виборі технології відновлення не поступається їй за працездатністю.
48965. Расчет структуры электромагнитных полей 623.5 KB
  Олемской Задание На курсовую работу Расчет структуры электромагнитных полей по курсу Теория Поля Студент Волошин С. Группа...
48966. Расчет возможных потерь от испарения нефти из резервуара на примере РВС 5000 (№4 в резервуарном парке) ЛПДС «Субханкулово» Туймазинского нефтепроводного управления 657.5 KB
  Кроме того потери нефти и нефтепродуктов при авариях разливах и утечках загрязняют почву грунтовые воды и водоёмы. Многократные перевалки нефтепродуктов и хранение нефти и нефтепродуктов в резервуарах ведут к потерям от испарения. Потери нефти и нефтепродуктов обусловливаются как специфическими их свойствами так и условиями перекачки хранения приёма отпуска техническим состоянием средств транспорта и хранения а также внимательностью и добросовестностью обслуживающего персонала.
48968. Теплообмінник «труба в трубі» 464 KB
  Стабільність роботи теплообмінника досягається деяким збільшенням простору теплообміну в порівнянні з розрахованою що забезпечує стійкі показники роботи теплообмінника в умовах поступового забруднення стінок труби. Опис та обґрунтування вибраної конструкції теплообмінника Опис конструкції основних складальних одиниць та деталей теплообмінника Апарат являє собою вертикальну раму на яку кріпляться елементи труба в трубіâ€ внутрішні труби яких з´єднуються між собою калачами а зовнішні – патрубками перехід з одного ряду до другого...
48969. Расчет структуры полей проводящего шара в диэлектрической среде 227.5 KB
  Цель работы -– расчет структуры полей проводящего шара в диэлектрической среде а также в волноводе для приведенных в задании параметров. Для заданной геометрии и параметров среды получены аналитические выражения значений потенциалов и напряженностей полей проводящего шара в диэлектрической среде а также расчетное соотношение для вектора магнитной индукции. Построены картины структуры статических полей для шара и переменных полей для волновода. Пар–тры: Проводящий шар в диэлектрической среде: R = 4см E0 = 10кВ м εе = 1 ...
48971. Конструктивные элементы токарного составного резца 679.5 KB
  Ограничения на допустимые углы в плане φ и φ1 резца приведены на рисунке 1. Для выбора резца используем ГОСТ 1888273 Резцы токарные расточные с пластинами из твердого сплава для обработки сквозных отверстий. Область применения твердого сплава Т15К6: получерновое точение чистовое точение нарезание резьбы резцами и вращающимися головками рассверливание растачивание и т.