38967

Особенности представления сигналов в ТВК. Основные способы сопряжения телевизионных датчиков с цифровым вычислительным устройством (ЦВУ), предопределяющие архитектуру ТВК. Их достоинства и недостатки

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Основные способы сопряжения телевизионных датчиков с цифровым вычислительным устройством ЦВУ предопределяющие архитектуру ТВК. Посредством устройства вводавывода УВВ данные накапливаемые в БЗУ могут пересылаться в оперативную память цифрового вычислительного устройства ЦВУ и подвергаться дальнейшей обработке в соответствии с запрограммированным алгоритмом. Таким образом БЗУ служит для обеспечения условий независимой работы ТД и ЦВУ функционирующих до начала передачи данных в асинхронном режиме. Тогда ЦВУ в соответствии с...

Русский

2013-09-30

55 KB

0 чел.

Особенности представления сигналов в ТВК. Основные способы сопряжения телевизионных датчиков с цифровым вычислительным устройством (ЦВУ), предопределяющие архитектуру ТВК. Их достоинства и недостатки.

Во всех ТВК, независимо от их типа и назначения, на начальном этапе предполагается преобразование аналоговых входных оптических сигналов в совокупность дискретных электрических сигналов, пригодных для осуществления дальнейшей цифровой обработки

изображений с применением средств вычислительной техники.

Такое преобразование осуществляется в два этапа.

E(x,y) => U(xi ,yj ) => [Ei,j]

На первом этапе входной оптический сигнал изображения E(x,y), представляющий собой в общем случае двумерную непрерывную функцию непрерывных пространственных аргу-ментов (координаты x,y), преобразуется в электрические сигналы U(xi ,yj ), то есть в дву-мерную непрерывную функцию дискретных пространственных аргументов xi ,yj. Сигнал U(xi ,yj ) представляет собой видеоимпульсы, на выходе матричного фотоприёмника (например, матрица ФПЗС, фотодиодная матрица или КМОП-матрица).

Заметим, что, если в телевизионном датчике используется так называемая «трубка бегущего луча» или любая другая вакуумная трубка, дискретизация изображения по вертикали (вдоль направления кадровой развёртки) происходит за счет структуры растра. При этом необ-ходимая дополнительная дискретизация по горизонтали (вдоль строки) может достигаться путём применения специальной схемы выборки хранения.

Для фотоприемника с накоплением энергии (например, матрица ФПЗС) величина напряжения сигнала видеоимпульса, снимаемого с i-того элемента j-той строки, определяется выражением:

Здесь S – интегральная чувствительность фотоприёмника, выраженная через экспозицию;

Tн – время накопления; xi, yi – координаты центра фоточувствительного элемента;

Δx и Δx – размеры фоточувствительного элемента по горизонтали и вертикали соответственно.

Второй этап преобразования осуществляется с помощью аналого-цифрового преобразователя (АЦП). Он заключается в квантовании сигналов U(xi ,yj) по уровням и формировании двоичных кодов соответствующих чисел Ei,j.

Таким образом, в ТВК цифровой обработке изображений должны предшествовать преобразования входного оптического сигнала E(x,y) в матрицу [Ei,j], представляющую собой двумерный массив целых чисел. Очевидно, что всякое преобразование сигналов с помощью АЦП связано с нелинейными искажениями и появлением погрешности квантования, которую можно считать распределённой по равномерному закону в пределах ± h/2, где h – шаг кван-тования. Однако величина погрешности квантования при достаточной разрядности АЦП может быть значительно меньше других составляющих.

В зависимости от области применения и условий работы телевизионные системы могут содержать различное число телевизионных датчиков, в их структуре могут использоваться специальные устройства кодирования, уплотнения и записи видеоинформации, аналоговые мультиплексоры, демультиплексоры и т.п.

Следует выделить два основных принципа построения архитектуры ТВС, принципиально различающихся по способам сопряжения телевизионного датчика с вычислительным устройством (рис 2.1).

Первый способ (рис. 2.1а) заключается в использовании режима программного ввода видеоинформации в вычислительное устройство.

Сигнал от телевизионного датчика (ТД) поступает в устройство предварительной обработки (УПО). Здесь осуществляется «привязка» уровня видеосигнала, его необходимое усиление, с целью оптимального согласования с АЦП, и преобразование видеоимпульсов в последовательность цифровых двоичных кодов. С выхода УПО двоичные коды поступают в буферное запоминающее устройство (БЗУ), где накапливаются в виде массива данных. Посредством устройства ввода-вывода (УВВ) данные, накапливаемые в БЗУ, могут пере-сылаться в оперативную память цифрового вычислительного устройства (ЦВУ) и подвергаться дальнейшей обработке в соответствии с запрограммированным алгоритмом. Таким образом, БЗУ служит для обеспечения условий независимой работы ТД и ЦВУ, функционирующих до начала передачи данных в асинхронном режиме.

При необходимости ввода очередного кадра, которая инициализируется программой, по соответствующей команде УВВ передаёт в БЗУ сигнал «Сброс». После завершения очеред-ного цикла накопления массива данных БЗУ должно подтвердить свою готовность к обмену, передав через УВВ ответный сигнал «требование адреса» (ТА). Тогда ЦВУ в соот-ветствии с разработанной программой выполняет определённое число пересылок данных из БЗУ в собственную оперативную память, запрашивая при этом через УВВ нужные адреса ячеек памяти, из которых осуществляется чтение накопленной информации. Каждая пере-сылка сопровождается синхронизирующим сигналом «Ввод данных» (ВД), поступающим в БЗУ.

Достоинство: чрезвычайная гибкость алгоритма передачи данных, который можно легко изменять чисто программным путём; для реализации процесса обмена данными, как правило,

удаётся использовать в основном стандартные средства УВВ, входящие в состав ЦВУ и некоторые дополнительные элементы.

Недостатки: необходимость ожидания готовности БЗУ к передаче данных, и это время иногда может быть соизмеримо со временем обработки изображения.

Одной из разновидностей программного ввода данных является ввод данных в режиме прерывания основной выполняемой программы.

В этом случае процедура ввода также осуществляется ЦВУ под программным управлением, однако, процедура ввода инициализируется не программой, а каким-либо внешним устройством, например УПО или самим БЗУ.

Рис. 2.1. Варианты сопряжения телевизионного датчика с вычислительным

устройством: при программном режиме обмена (а); при обмене в режиме прямого доступа к памяти (б).

Ввод данных в режиме прерывания позволяет избежать необходимости ожидания готовности БЗУ, связанного с непроизводительной потерей времени ЦВУ.

Второй способ (рис.2.1б) предполагает реализацию режима прямого доступа к оперативной памяти ЦВУ без использования БЗУ.

В этом случае процессор ЦВУ как бы временно отключается, а функции по вводу данных в ЦВУ выполняет специальный блок сопряжения (БС). Перед началом цикла ввода БС вырабатывает сигнал «требование прямого доступа» (ТПД). По этому сигналу ЦВУ

заканчивает очередное обращение к памяти и посылает в БС ответный сигнал «предоставление прямого доступа» (ПДП). Сразу после этого БС начинает передавать данные, поступающие с УПО непосредственно в оперативную память ЦВУ, формируя при этом адреса ячеек оперативной памяти. Кроме того, БС осуществляет регенерацию памяти ЦВУ. После завершения ввода БС снимает состояние прямого доступа и вновь передаёт управление оперативной памятью процессору ЦВУ.

Достоинство и недостаток: в режиме прямого доступа достигается предельное быстродействие системы при передаче данных от ТД в ЦВУ, однако это достигается за счет некоторого усложнения аппаратной части и применения более жёсткого алгоритма обмена.


 

А также другие работы, которые могут Вас заинтересовать

2162. Фізика. Теорія и практика фізичних процессів 9.24 MB
  Порівняйте основні властивості біполярних і польових транзисторів з ізольованим затвором. Обґрунтуйте переваги використання транзисторів інтегральних мікросхем з бар`єром Шотткі. Проаналізуйте умови стаціонарної генерації випромінювання напівпровідникових лазерів. Як зміниться критична густина струму, якщо ширина робочого тіла інжекційного лазера зміниться вдвічі.
2163. Технологические процессы в машино-строении 8.29 MB
  Элементы теплофизики металлургических и литейных процессов. Метод точечных источников тепла. Выравнивание температуры в неограниченном стержне. Оценка потерь тепла через стены шахтной печи при стационарном теплообмене с окружающей средой. Кинематические и геометрические параметры способов обработки резанием. Силы при фрезеровании торцово коническими прямозубыми фрезами.
2164. Определение шага расстановки грузов при укладке трубопровода 16.62 KB
  Цель: Рассчитать шаг расстановки исследуемых чугунных грузов при укладке нефтепровода через болото.
2165. Проверка подземного и наземного (в насыпи) трубопровода на прочность и недопустимость пластических деформаций 24.5 KB
  Цель: Проверка на прочность, на недопустимость пластических деформаций участок магистрального трубопровода с наружным диаметром - Dн и толщиной стенки – δ.
2166. Математическое моделирование тепловых процессов 31.78 KB
  Задание. Разработать математическую модель: процесса теплообмена, позволяющую находить один из параметров процесса в соответствии с вариантом задания.
2167. Виховна система 18.85 KB
  Педагогічний процес здійснюється в рамках певної виховної системи. Виховна система - це сукупність взаємопов'язаних цілей і принципів організації виховного процесу, методів і прийомів їх поетапної реалізації в межах певної соціальної структури.
2168. План воспитательной работы в группе 18.81 KB
  Психолого-педагогическая характеристика группы. Цель воспитательной работы. Содержание воспитательной работы. Индивидуальная работа с учащимися.
2169. Микроклимат семьи и его влияние на социализацию подростка 23.65 KB
  Семья выступает в качестве как положительного, так и отрицательного фактора воспитания. Положительное воздействие состоит в том, что никто кроме самых близких, не относится к ребёнку лучше, и вместе с тем никто не может потенциально нанести столько вреда в воспитании, сколько семья.
2170. Локальні та глобальні мережі 49.5 KB
  Комп’ютерні мережі та їх будова. Локальні комп’ютерні мережі. Глобальні комп’ютерні мережі.