38989

Численные методы

Контрольная

Математика и математический анализ

Из полученных данных видно, что метод подобластей имеет наилучший результат вычислений из всех остальных методов. Во-первых, даже при небольшом количестве разбиений он дал точность на 2 порядка лучше, чем второй по полученной точности метод Галеркина. Во-вторых, точность при количестве дискрет n=12 уже не укладывалась в разрядную сетку персонального компьютера.

Русский

2013-09-30

2.17 MB

13 чел.

Московский Энергетический Институт (ТУ)

РАСЧЕТНОЕ ЗАДАНИЕ №4

По дисциплине ВГМ

Тема: «Численные методы»

Студентка         Климова В.В.

Группа         С-08-05

Преподаватель        Моргунов Г.М.

Москва, 2009


Исходные данные:

      (1)

  1.  Численное решение уравнения:

Решаем методом разделения переменных.

Решение в общем виде: 

Найдем постоянную интегрирования:

1=e0 +C  => C=0

  1.  Решение  уравнения методом конечных разностей

Представим производную в кончено-расностной форме.

Заменим

, где

Подставляя в исходное уравнение (1), имеем:

Численные сравнительные данные  расчета методом конечных разностей при n=3 дискрет на интервале [0,1] представлены в табл. 1

Таблица 1

n=3

X

точное

расчетное 

Ошибка

0

0

1

1

0

1

0,33333333

1,39561243

1,4

-0,00439

2

0,66666667

1,94773404

1,96

-0,01227

3

1

2,71828183

2,744

-0,02572

Среднеквадратичная ошибка

0,016647

Численные сравнительные данные  расчета методом конечных разностей при n=6 дискрет на интервале [0,1] представлены в табл. 2

Таблица 2

n=6

X

точное

расчетное 

Ошибка

0

0

1

1

0

1

0,16666667

1,18136

1,18181818

-0,00046

2

0,33333333

1,395612

1,39669421

-0,00108

3

0,5

1,648721

1,65063862

-0,00192

4

0,66666667

1,947734

1,95075473

-0,00302

5

0,83333333

2,300976

2,30543741

-0,00446

6

1

2,718282

2,72460785

-0,00633

Среднеквадратичная ошибка

0,003515

Численные сравнительные данные  расчета методом конечных разностей при n=12 дискрет на интервале [0,1] представлены в табл. 2

Таблица 3

n=12

X

точное

расчетное

ошибка

0

0

1

1

0

1

0,08333333

1,086904

1,08695652

-5,2E-05

2

0,16666667

1,18136

1,18147448

-0,00011

3

0,25

1,284025

1,28421139

-0,00019

4

0,33333333

1,395612

1,39588195

-0,00027

5

0,41666667

1,516897

1,51726299

-0,00037

6

0,5

1,648721

1,6491989

-0,00048

7

0,58333333

1,792002

1,7926075

-0,00061

8

0,66666667

1,947734

1,94848641

-0,00075

9

0,75

2,117

2,11792001

-0,00092

10

0,83333333

2,300976

2,30208697

-0,00111

11

0,91666667

2,50094

2,50226844

-0,00133

12

1

2,718282

2,71985701

-0,00158

Среднеквадратичная ошибка

0,000805

Результирующие графики численных значений функции при разных значениях  дискрет на интервале x[0,1] представлены на рис. 1. Значение ошибки расчета на рис. 2.

Рис. 1 Графики численных значений функции при разных значениях  дискрет на заданном интервале

Рис. 2 Графики ошибок численных значений функции при разных значениях  дискрет на заданном интервале


  1.  Решение  уравнения методом подобластей

Для численного расчет используем аппроксимирующую функцию вида:

Невязка имеет вид:

Для данного метода весовая функция имеет вид:

Поставляем в равенство:

        (2)

Интегрируя равенство (2) получаем соотношение:

     (3)

Для дальнейшего решения используются математические возможности программы MATHCAD.

Сведем систему уравнений (3) в матрицу для определения коэффициентов аппроксимирующей функции:

Программа расчета коэффициентов:

Численные значения коэффициентов для количества дискрет n=3 на интервале [0,1]:

Решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию:

Результаты расчетов методом подобластей  с количеством дискрет n=3  внесены в таблицу 4.

Таблица 4

n=3

X

точное

расчетное 

ошибка

0

0

1

1

0

1

0,33333333

1,3956124250860895

1,3958333333333333

-0,00022

2

0,66666667

1,9477340410546757

1,9479166666666665

-0,00018

3

1

2,718281828459045

2,71875

-0,00047

Среднеквадратичная ошибка

0,000317

Численные значения коэффициентов для количества дискрет n=6 на интервале [0,1]:

Решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию для n=6:

Результаты расчетов методом подобластей  с количеством дискрет n=6   внесены в таблицу 5.

Таблица 5

n=6

X

точное

расчетное 

Ошибка

0

0

1

1

0

1

0,16666667

1,18136

1,1813604

-1,2422973982850749Е-08

2

0,33333333

1,395612

1,395612414

-1,1526311460841043Е-08

3

0,5

1,648721

1,648721255

-1,5322135116235813Е-08

4

0,66666667

1,947734

1,947734025

-1,6403375102669315Е-08

5

0,83333333

2,300976

2,300975868

-2,248237418456256Е-08

6

1

2,718282

2,718281814

-1,448308983853508Е-08

Среднеквадратичная ошибка

1,58443E-08

Численные значения коэффициентов для количества дискрет n=12 на интервале [0,1]:

Числовое значение матрицы:

Численное решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию для n=12:

Результаты расчетов методом подобластей  с количеством дискрет n=12сведены в таблицу 6.

Таблица 6

n=12

X

точное

расчетное 

ошибка

0

0

1,0000000000

1,0000000000

0

1

0,08333333

1,0869040495

1,0869040495

0

2

0,16666667

1,1813604129

1,1813604129

0

3

0,25

1,2840254167

1,2840254167

0

4

0,33333333

1,3956124251

1,3956124251

0

5

0,41666667

1,5168967964

1,5168967964

0

6

0,5

1,6487212707

1,6487212707

0

7

0,58333333

1,7920018257

1,7920018257

0

8

0,66666667

1,9477340411

1,9477340411

0

9

0,75

2,1170000166

2,1170000166

0

10

0,83333333

2,3009758909

2,3009758909

0

11

0,91666667

2,5009400137

2,5009400137

0

12

1

2,7182818285

2,7182818285

0

Среднеквадратичная ошибка

0

Графики расчетной функции при разных величинах дискрет методом подобластей показаны на рис. 3 и рис. 4.

Рис. 3. Графики расчетной функции при разных величинах дискрет методом подобластей

Рис. 4. Графики расчетной функции при разных величинах дискрет методом подобластей (увеличенное изображение в области [0, 0.01])

  1.  Решение  уравнения методом Галеркина

Для данного метода весовая функция имеет вид:

Учитывая весовую функцию и подставляя ее в выражение (2) имеем:

Для упрощения получения матрицы коэффициентов ai   используем программу в среде MATHLAB:

Находим матрицы коэффициентов для каждого заданного количества дискрет и находим решение системы уравнений с помощью функции lsolve математического пакета MATHCAD

При n=3

Решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию:

Результаты расчетов методом Галеркина  с количеством дискрет n=3 внесены в таблицу 7.

Таблица 7

n=3

X

точное

расчетное 

Ошибка

0

0

1

1

0

1

0,33333333

1,39561243

1,398

0,00208

2

0,66666667

1,94773404

1,95

0,002478

3

1

2,71828183

2,721

0,00303

Среднеквадратичная ошибка

0,002559152

При n=6

Решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию:

Результаты расчетов методом Галеркина  с количеством дискрет n=6 внесены в таблицу 8.

Таблица 8

n=6

X

точное

расчетное 

ошибка

0

0

1

1,00000

0

1

0,16666667

1,18136

1,18136

-5.016 10-7

2

0,33333333

1,395612

1,395612

-5.544 10-7

3

0,5

1,648721

1,648721

-8.207 10-7

4

0,66666667

1,947734

1,947734

-7.711 10-7

5

0,83333333

2,300976

2,300976

-1.027 10-7

6

1

2,718282

2,718282

-9.651 10-7

Среднеквадратичная ошибка

7,97273E-07

При n=12

Решение системы уравнений:

Полученные данные записываем в аппроксимирующую функцию:

Результаты расчетов методом Галеркина  с количеством дискрет n=12 внесены в таблицу 9.

Таблица 9

N=12

X

точное

расчетное 

ошибка

0

0

1

1

0

1

0,08333333

1,086904

1,086904

1.3956 10-8

2

0,16666667

1,18136

1,18136

2.467 10-8

3

0,25

1,284025

1,284025

1.9515 10-8

4

0,33333333

1,395612

1,395612

2.47 10-8

5

0,41666667

1,516897

1,516897

2.87 10-8

6

0,5

1,648721

1,648721

2.62 10-8

7

0,58333333

1,792002

1,792002

3.17 10-8

8

0,66666667

1,947734

1,947734

3.57 10-8

9

0,75

2,117

2,117

3.45 10-8

10

0,83333333

2,300976

2,300976

4.23 10-8

11

0,91666667

2,50094

2,50094

4.11 10-8

12

1

2,718282

2,718282

3.87 10-8

Среднеквадратичная ошибка

3,13215E-08

Графики расчетной функции при разных величинах дискрет методом Галеркина показаны на рис. 5 и рис. 6.

Рис. 5. Графики расчетной функции при разных величинах дискрет методом Галеркина

Рис. 6. Графики расчетной функции при разных величинах дискрет методом Галеркина (увеличенное изображение в области [0, 0.01])


  1.  Решение  уравнения методом конечных элементов

Конечное решение уравнения (1) имеет вид:

На интервале XiXXi-1/2

На интервале Xi-1/2<XXi-1

Расчет сводится к определению узловых точек yi.

Имеем уравнения невязок на всем диапазоне:

   (4)

     (5)

Учитывая весовые функции:

 

Выражения (4) и (5) используются для интегральной невязки(2):

Для упрощения расчетов узловых точек использовано программирование в пакете MATHLAB. Результаты расчетов интегральной невязки сведены в программу расчета узловых точек.

Программа расчета узловых точек:

Результаты расчета узловых точек при n=3:

Результаты расчета узловых точек при n=6:

Результаты расчета узловых точек при n=12:

Результаты расчетов конечных узлов методом конечных элементов  с количеством дискрет n=3 внесены в таблицу 10.

Таблица 10

n=3

X

точное

расчетное 

Ошибка

0

0

1

1

0

1

0,33333333

1,39561243

1.371681

0,02393143

2

0,66666667

1,94773404

1.930285

0,01744904

3

1

2,71828183

2.739948

-0,02166617

Среднеквадратичная ошибка

0,021186515

Результаты расчетов конечных узлов  методом конечных элементов  с количеством дискрет n=6 внесены в таблицу 11.

Таблица 11

n=6

X

точное

расчетное 

ошибка

0

0

1

1

0

1

0,16666667

1,18136

1,163424

0,017936

2

0,33333333

1,395612

1,369138

0,026474

3

0,5

1,648721

1,617418

0,031303

4

0,66666667

1,947734

1,914396

0,033338

5

0,83333333

2,300976

2,268522

0,032454

6

1

2,718282

2,690225

0,028057

Среднеквадратичная ошибка

0,028735374

Результаты расчетов конечных узлов  методом конечных элементов  с количеством дискрет n=12 внесены в таблицу 12.

Таблица 12

n=12

X

точное

расчетное 

ошибка

0

0

1

1

0

1

0,08333333

1,086904

1,07706422

0,00983978

2

0,16666667

1,18136

1,166405953

0,014954047

3

0,25

1,284025

1,265460735

0,018564265

4

0,33333333

1,395612

1,374179302

0,021432698

5

0,41666667

1,516897

1,493054702

0,023842298

6

0,5

1,648721

1,622805526

0,025915474

7

0,58333333

1,792002

1,764291873

0,027710127

8

0,66666667

1,947734

1,918488943

0,029245057

9

0,75

2,117

2,086479959

0,030520041

10

0,83333333

2,300976

2,26945711

0,03151889

11

0,91666667

2,50094

2,468726514

0,032213486

12

1

2,718282

2,685715584

0,032566416

Среднеквадратичная ошибка

0,025837347

Графики расчетной функции при разных величинах дискрет методом конечных элементов показаны на рис. 7.

Рис. 7. Графики расчетной функции при разных величинах дискрет методом конечных элементов


  1.  Выводы по работе

Для оценки точности использованных методов их данные сведены в таблицу 13.

Таблица 13

Количество дискрет

Численный метод

Среднеквадратичная погрешность

N=3

метод конечных разностей

0,016647

метод подобластей

0,000317

методом Галеркина

0,002559152

конечных элементов

0,028735374

N=6

метод конечных разностей

0,003515

метод подобластей

1,58443E-08

методом Галеркина

7,97273E-07

конечных элементов

0,028735374

N=12

метод конечных разностей

0,000805

метод подобластей

0

методом Галеркина

3,13215E-08

конечных элементов

0,025837347

Из полученных данных видно, что метод подобластей имеет наилучший результат вычислений из всех остальных методов. Во-первых, даже при небольшом количестве разбиений он дал точность на 2 порядка лучше, чем второй по полученной точности метод Галеркина. Во-вторых, точность при количестве дискрет n=12 уже не укладывалась в разрядную сетку персонального компьютера.


 

А также другие работы, которые могут Вас заинтересовать

82347. Специфика психолого-педагогической диагностики детей 5-7 лет с нарушениями зрения в условиях ПМПК 370.5 KB
  В этом возрасте к ребенку уже предъявляется система внешне нормированных требований, как к социальному индивиду. В данном случае речь идет о социально-психологическом аспекте адаптации, которая служит, с одной стороны, довольно точным индикатором различных дефицитов и отклонений в развитии...
82348. Совершенствование кадровой политики ООО «Колинз Ритейл» 1.26 MB
  Для сферы управления персоналом характерно наличие специфического понятийного аппарата отличительных характеристик и показателей деятельности специальных процедур и методов – аттестации эксперимента и других; методов изучения и направления анализа содержания труда различных категорий персонала.
82349. Содержание и психологическая характеристика представлений гагаузских первоклассников о России 574.18 KB
  Представления накладывают отпечаток на весь процесс психического развития. Так немецкий психолог Вильям Штерн определял представления детей 6–лет как конгломерат впечатлений в котором смешиваются объективные и аффективные моменты опыта ребёнка указывал что образ возникающий при взаимодействии ребёнка...
82350. Способы образования бизнес-терминов в русском языке и особенностей их функционирования 73.36 KB
  Исследование различных терминосистем способствует совершенствованию русской терминологии в целом выявлению общих закономерностей развития терминологических единиц в системе современного русского языка. Материалом исследования послужили лексические единицы взятые из печатных и электронных словарей...
82353. Разработка мероприятия по повышению эффективности управления мотивацией персонала ресторана «Охотников» 698 KB
  Мотивация — соотношение между поведением человека и причинами, которые обусловливают это поведение; совокупность психологических явлений, в которых отражается наличие в человеческой психике определенной готовности, направляющей к достижению цели.
82354. Дизайн-проект кінологічного центру 1.74 MB
  Традиційні ветеринарні клініки, які функціонують в великих містах України, не зовсім відповідають сучасним тенденціям з утримання та розведення домашніх тварин. Домашні улюбленці, які якоюсь мірою стають членами сім’ї, потребують більш гнучкого підходу до їх утримання, особливо в середовищі великих міст, яким є Київ.
82355. ГЛАВНЫЕ ПЛОЩАДИ МИНСКА В РАЗРАБОТКЕ ЭКСКУРСИОННОГО МАРШРУТА 404 KB
  Цель работы – разработка экскурсионного маршрута по главным площадям Минска. Методы исследования: анализ и синтез, сравнение, исторический и логический, историко-сравнительный, метод описания. Результаты внедрения: маршрут внедрён и функционирует на базе туристической фирмы города Минска ТУП «ВЛБ-ТРЭВЕЛ».