39020

Веб-системы

Лекция

Информатика, кибернетика и программирование

Образующие Разделы Лекции 7: 7.1 Образующие Образующие это непроизводные атомарные элементы теории паттернов из которых составляются паттерновые сети. Образующие имеют неотделимые от них связи. В дискретной теории паттернов рассматриваются образующие обладающие конечными числами связей.

Русский

2013-09-30

69 KB

0 чел.

                    ЛЕКЦИЯ 8. Образующие

    Разделы Лекции  7:  7.1 Веб-системы,  7.2 Паттерновые (модульные) сети и  парадигма  модульного   мышления,   7.3   Модульные   свойства паттерновых сетей.

                          8.1 Образующие

    Образующие -   это   непроизводные  (атомарные)  элементы  теории паттернов,  из которых составляются паттерновые сети. Образующие имеют неотделимые    от   них   связи.   В   дискретной   теории   паттернов рассматриваются образующие, обладающие конечными числами связей.

    Образующая с  конечным  числом  связей  (дискретная   образующая) обозначается символом gi,  а конечное или счетное множество образующих - символом Gn,  где n=1,2,.... Образующая может иметь связи трех видов - входные,  выходные и неориентированные. Образующая с входными и /или выходными    связями    называется   ориентированной.   Образующая   с неориентированными связями называется неориентированной.

    Для практики   наибольший  интерес  представляют  ориентированные образующие,  поскольку они моделируют реальные модули с их  входами  и выходами.  Ориентированными  образующими  можно  формально  и наглядно представлять,  например,  модули  из  которых  состоят  гипертексты  и компьютерные программы.

    Из образующих  конструируются  паттерновые   сети,   моделирующие модульные  системы,  состоящие  из взаимосвязанных модулей.  Примерами таких модульных систем,  моделируемых  паттерновыми  сетями,  являются компьютерные  гипертексты,  нейросети мозга,  нейрокомпьютерные сети и многие другие системы.

    Поскольку образующие служат математическими и наглядными моделями логических и физических модулей реального  мира,  необходимо  пояснить смысл,  придаваемый термину "модуль" в дискретной теории паттернов.  В естественном  языке  слово  "модуль"  трактуется   очень   широко.   В дискретной   теории   паттернов  термин  "модуль"  имеет  более  узкое смысловое значение.  Он означает объект реального  мира,  который  его наблюдатель представил  в  виде  образующей.  Такой  объект называется "реальным   модулем",   а   его   наблюдатель   называется   "реальным наблюдателем".   Примерами   реальных   модулей  могут  служить  кадры гипертекстов,  веб-страниц и учебных веб-курсов,  модули  компьютерных программ,  операции  технологических и иных процессов,  нейроны мозга, операционные  усилители  нейрокомпьютеров  и  другие  объекты.   Любой объект,  обладающий  модульными  свойствами,  может  быть  представлен соответствующей образующей.

    Наблюдатель, рассматривающий реальный  модуль  может,  во-первых, мысленно  представить его в виде схемы образующей и затем использовать этот зрительный  образ  в  своих  рассуждениях.  Во-вторых,  он  может описать модуль формально. Наконец, наблюдатель может изобразить модуль в  виде  схемы  образующей,  нарисованной  на   плоской   поверхности, например,   на   бумаге.   Для  решения  практических  задач,  обычно, достаточно нарисовать схемы образующих и не описывать их формально.

    В некоторых  случаях,  например  при  модульном моделировании баз данных, образующими можно изображать не только объекты реального мира, но и бинарные отношения между  ними.  Это  означает,  что  наблюдатель представляет отношения между объектами в виде модулей.

            8.2 Параметрический вектор компонент образующих

    Практика решения инженерных  задач  показала,  что  логические  и физические   модули  с  входами  и  выходами  эффективно  моделируются ориентированными образующими,  определяемыми следующим параметрическим вектором компонент:

       a(gi)=a(i,    ,   il     ,   inim, outir    )                   (1)

где i-порядковый номер образующей gi в конечном множестве образующих Gn   ;  il   - атрибуты образующей;   , inim, outir      - показатели входных и выходных связей  образующей  gi ;  l,m,r - параметры компонент вектора (1).

    Компоненты  il , inim, outir параметрической образующей gi делятся на две  группы. Компоненты первой группы, представленные символами с нижними индексами, называются  атрибутами образующей.  Если  l=1, то

образующая  gi  имеет только  один  атрибут i1.  Компоненты   второй группы,  представленные  в векторе (1) символами      ,  называются  в общей  теории  паттернов показателями  связей образующей. В дискретной теории   паттернов  показатели   связей    и  атрибуты    вектора (1) трактуются как переменные, имеющие соответствующие области значений.

    Параметры l,m,r, фигурирующие в нижних индексах переменных  и образующей  gi,   могут   принимать   различные   числовые   значения: l=1,2,...;  m=0,1,2,...; r=0,1,2,....  В результате изменения значений параметров m,r  из вектора (1) получаются векторы компонент образующих с разными числами входных и выходных связей.

    Образующие, определяемые    параметрическим     вектором     (1), представляют в обобщенной форме лишь структуры реальных модулей. Чтобы образующие моделировали не только   структуры,  но  и   информационное содержание модулей, в дискретной теории паттернов переменным il, inim, outir  вектора  (1)  ставятся в соответствие  множества:

              Dil , Dinim , Doutir                   (2),

называемые доменами.

    В доменах помещаются данные присваиваемые переменным      и векторов компонент образующих.

    Для получения образующих с разными  числами  входных  и  выходных связей  параметры  m,r  в  векторе (1) заменяются конкретными числами. Одновременно эти параметры заменяются в доменах (2) такими же числами.

    Очевидно, что   параметрический  вектор  (1)  и  его  домены  (2) представляют собой параметрические образы структур и содержаний многих образующих, имеющих различные числа входных и выходных связей.

    Особыми являются  случаи,  когда  параметры  m  и  r  принимают в векторе (1) и доменах (2) значения равные нулю.  В случае,  когда  m=0 переменная  inim    и домен Dinim    исключаются из соотношений (1) и (2).   В случае, когда r=0 из соотношений (1), (2) исключаются переменная  outir  и домен Doutir  .   Благодаря   этим   условиям   обнуления параметров  m,r обеспечивается моделирование образующих, не имеющих входных и выходных связей.

     В дискретной  теории паттернов применяются три вида образующих - абстрактные, конкретные и ассоциированные.

    Абстрактная образующая  определяется  следующим  образом.  Во все домены  образующей    помещается   неопределенное   значение   данных, обозначаемое символом 0    . Образующая называется абстрактной, если во всех ее доменах содержится только символ  0 и ни в одном из них нет конкретных данных,   характеризующих   реальные   модульные   объекты. Следовательно  абстрактная  образующая  не  определена  на  какой-либо конкретной  информационной  среде.  Образно  говоря,  все  абстрактные образующие определены на "пустой" информационной  среде,  обозначаемой символом 0.

    Образующая, в доменах которой помимо символа 0 помещены  данные об одном  или  нескольких  реальных  модулях,  называется  конкретной. Абстрактная образующая превращается в конкретную после размещения в ее доменах данных о  реальных  модулях.  Конкретные  образующие  занимают промежуточное положение    между   абстрактными   и   ассоциированными образующими. Домены конкретных образующих определяются в общем  случае как конечные или счетные множества значений переменных   и  . В этом они аналогичны  доменам  атрибутов  реляционных   отношений,   которые определяются в теории реляционных баз данных как конечные или  счетные множества значений атрибутов.

    Если переменным  и    конкретной образующей присваиваются взятые из доменов  данные  о  реальном  модуле,  то   образующая   становится ассоциированной с данными и служит паттерновой моделью этого модуля.

    Кратко, абстрактные,  конкретные  и  ассоциированные   образующие можно охарактеризовать следующим образом. Абстрактные образующие имеют абстрактные вектора компонент и "пустые" домены, содержащие символы 0. Конкретные  образующие  имеют  абстрактные  вектора компонент и домены, содержащие конкретные данные  об  одном  или  многих  реальных модулях.   Ассоциированные   образующие   имеют   вектора   компонент, ассоциированные  с  данными  об  одном  реальном  модуле   и   домены, содержащие конкретные данные об одном или многих реальных модулях.

    Абстрактные, конкретные  и ассоциированные образующие,  не только представляются  своими  векторами  компонент  и  доменами.  Они  также изображаются  наглядными  схемами,  рисуемыми  на  бумаге  или экранах дисплеев.  Наличие у образующих наряду с формальными представлениями в виде  векторов  компонент также наглядных схем исключительно важно для практики.

                    8.3 Виды образующих

    Путем замены в векторе (1) параметров m и r  конкретными  числами получаются  многие  виды  образующих  с  различными  числами входных и выходных  связей.  Естественно,  что   не   все   они   пригодны   для представления    модульных    объектов    компьютерных   систем.   Для моделирования большинства  реальных  компьютерных  модулей  достаточно использовать   шесть   видов   образующих   -   линейные   образующие, крест-образующие,  сложные образующие,  образующие анализа, образующие синтеза,  начальные образующие,  конечные образующие.  Наглядные схемы шести видов образующих представлены на Рис.8.1.

                                РИС.8.1

    Показанные на схемах точки называются  вершинами  образующих,  по аналогии  с  вершинами  графа.  Стрелки  с  треугольниками  на  схемах изображают связи образующих.  Направленные к точкам (вершинам) стрелки с треугольниками изображают входные связи образующих. Стрелки обратных направлений и их треугольники изображают  выходные  связи  образующих. Поскольку  образующая рассматривается в теории паттернов как атомарный элемент,  то стрелки с треугольниками (связи)  нельзя  отсоединять  от вершин образующих.

    На Рис.  8.1a показано,  что при условии m=1,  r=1 из вектора (1) получается линейная образующая. Переменным ini1   и outi1   линейной образующей поставлены в соответствие их домены.  У образующих других видов домены не показаны,  но для образующих приведены числовые значения параметров m и r, а также соответствующие вектора компонент.

    Образующими, показанными   на  Рис.8.1, представляются  различные компьютерные   объекты.   Например,   линейными    образующими   можно моделировать текстовые строки,  хранящиеся в памяти компьютера.  Крест образующими моделируются пиксели.

    Реальные модули,    как    было    сказано   выше,   моделируются ассоциированными образующими. Образующая является ассоциированной, если ее переменным    и    присвоены данные, определяющие реальный модуль.

    К ассоциированным    образующим    можно    применять    операции преобразования подобия. В общем случае операция преобразования подобия обозначается символом s.  В результате  применения  к  ассоциированной образующей  преобразования подобия s присвоенные ее переменным данные, определяющие некоторый реальный  модуль,  заменяются  новыми  данными, определяющими другой модуль.

                 8.4 Образующие анализа и синтеза

    Особый интерес  для  компьютерной  науки и практики,  а также для исследований нейросетей мозга и нейрокомпьютерных  сетей  представляют образующие синтеза (S-образующие) и образующие анализа (А-образующие). Их схемы представлены на Рис.8.1d,e.  Как видно  из  схем,  образующие анализа и  синтеза  зеркально  симметричны   при   условии   изменения направлений стрелок   и  перемены  мест  параметров  m  и  r.  Если  в показанном на  Рис.8.1  векторе компонент  А-образующей  поменять  все индексы  in  на  индексы out и заменить параметр m на r,  то получится S-образующая.  И,  наоборот,  если в  векторе  признаков  S-образующей поменять  индексы  out  на  индексы in и заменить параметр r на m,  то получится А-образующая.  Взаимная наглядная  и  формальная  зеркальная симметрия  образующих анализа и синтеза раскрывает взаимосвязь анализа и синтеза информации.

    S-образующими можно моделировать  нейроны  мозга  и  операционные усилители нейрокомпьютеров. Если S-образующая моделирует нейрон мозга, то,  i - порядковый номер нейрона  среди  n  нейронов,  входные  связи S-образующей представляют волокна дендритов нейрона,  а выходная связь представляет  аксон.  Далее,  в  Лекции   10   будет   показано,   что многочисленные выходные волокна аксона,  моделируются копиями выходной связи  S-образующей.

    А-образующими можно моделировать,  например, функциональные столы систем   Windows   и   страницы  (кадры)  веб-страниц.  Входная  связь А-образующей может иметь копии.

    Образующие анализа  и  синтеза,  а  также образующие других видов являются элементарными логическими "кирпичиками",  из которых строятся паттерновые  сети,  моделирующие  компьютерные  системы,  состоящие из модулей.

    В дискретной  теории  паттернов помимо ориентированных образующих используются    также    неориентированные     образующие.     Обычно, неориентированная    связь    образующей    является   сверткой   двух ориентированных связей (входной и выходной).


 

А также другие работы, которые могут Вас заинтересовать

42577. Архиватор WinRar 36.5 KB
  Запустить проводник Windows найти на диске файл более 100Кб скопировать его в папку 1. Найти на диске несколько папок и файлов 5 скопировать их в папку 2. При помощи кнопки dd – добавить в архив файл находящийся в папке 1 без папки.rr Записать время работы архиватора и размер полученного файла.
42578. РАЗНОСТНЫЕ ОПЕРАТОРЫ НЦФ 123.5 KB
  Применение разностных операторов Выделение зашумленных участковв массивах данных Данные массива = Установить после считывания по размеру массива данных. Выделить и проанализировать шумы в каротажных данных разностным оператором 3го порядка. Распределение модуля усиленных шумов: = П оператор НЦФ нормированный к 1 по сумме коэффициентов Нормированное скалярное произведение массивов zd и z в скользящем окне 2M1: Свертка Восстановление пропущенных данных и замена выбросов Сформируйте оператор восстановления пропущенных данных из...
42581. Изучить способы изменения и записи приглашения MS-DOS 42 KB
  Проделав данную лабораторную работу, я познакомился с программной оболочкой MS - DOS. Изучил основные приемы работы с файлами и каталогами.
42582. Линейные программы и условные операторы в Pascal 327 KB
  Регистр символов в Паскале не имеет значения.1 Для вычисления значений z1 и z2 необходимо ввести с клавиатуры значение переменной и вывести полученные значения z1 и z2 на экран. Выполняемые функции нахождение значения z по формулам и . 8 Результаты тестирования Разработанные программы были протестированы в 3х режимах: корректные значения граничные значения некорректные данные.
42583. ИЗУЧЕНИЕ КОНСТРУКЦИИ И ТАРИРОВКА ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ УРОВНЯ БУЙКОВОГО ТИПА УБ-П 60 KB
  Цель и порядок проведения работы Цель работы. Порядок проведения работы: Ознакомить с принципами работы буйкового уровнемера УБП Собрать измерительную схему Рассчитать массу буйка для значений 10 20 30 40 50 60 70 80 90 100 шкалы уровнемера. Для проведения работы: измерительный преобразователь уровня буйковый типа УБП; манометр образцовый М0160 предел измерения 16 кгс см2; гири общепромышленного назначения типа Г41100 по ГОСТ 732885. Таблица №1 Путем проведения лабораторной работы мы закрепили теоретический...
42584. Измерение содержание СО2 газоанализатором 35 KB
  Цель работы: ознакомится с принципом действия изучить прибор собрать схему произвести замеры полученные данные занести в таблицу сделать выводы. ход работы: собрать измерительную схему по рисунку проверить схему произвести замеры полученные данные занести в таблицу сделать выводы.43 Вывод: изучили схему научились работать с прибором .
42585. Моделювання системи завадостійкої передачі інформації 125.5 KB
  Створити кореляційний приймач Перемножуач інтегратор пристрій синхронізації пороговий пристрій.