39115

ИССЛЕДОВАНИЕ КОРОННОГО РАЗРЯДА

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Если к двум электродам между которыми находится газовый промежуток приложить электрическое поле то при определенной разности потенциалов между электродами которую назовем критической и обозначим через U0 возникает коронный разряд. При прочих равных условиях вероятность появления свечения вокруг электрода а следовательно короны тем больше чем меньше радиус кривизны электродов. Свечение возникающее при коронном разряде около электрода связано с элементарными процессами происходящими на границе электрод воздух или в объеме...

Русский

2013-10-01

305.5 KB

6 чел.

Государственный комитет РФ по высшему образованию

Санкт-петербургский Государственный Электротехнический Университет  “Лэти”

ИССЛЕДОВАНИЕ КОРОННОГО РАЗРЯДА

Отчет по лабораторной работе №6

Студент группы 2211  Захаров Д.В.

Санкт-Петербург

2004 год


Целью работы:
является ознакомление с основными свойствами коронного разряда и исследование работы стабилитронов на их основе.

Схема лабораторной установки

Общие сведенья: коронный разряд является самостоятельным разрядом в сравнительно плотном газе. Если к двум электродам, между которыми находится газовый промежуток, приложить электрическое поле, то при определенной разности потенциалов между электродами, которую назовем критической и обозначим через U0, возникает коронный разряд. Его появление существенным образом зависит от конфигурации электродов. Легче всего коронный разряд возникает между остриями, тонкими проволочками, шарами малого диаметра и т. п. Внешне коронный разряд проявляется в том, что в небольшом объеме газа (воздуха) около одного или обоих электродов возникает слабое свечение (в воздухе – сине-зеленого цвета). При прочих равных условиях вероятность появления свечения вокруг электрода, а, следовательно, короны, тем больше, чем меньше радиус кривизны электродов. Электрод, вокруг которого наблюдается свечение, называют коронирующим электродом. Свечение, возникающее при коронном разряде около электрода, связано с элементарными процессами, происходящими на границе электрод - воздух или в объеме воздуха вблизи электрода. В результате элементарных процессов в небольшом объеме воздуха вблизи электрода протекают ионизация, возбуждение, диссоциация молекул азота и кислорода. Естественно, что в этом объеме воздуха должны развиваться и обратные процессы: рекомбинация ионов и электронов, образование отрицательных ионов, переход возбужденных молекул (атомов) из возбужденных состояний в нормальные с излучением квантов света и так далее.  По своему спектральному составу свечение, наблюдаемое при коронном разряде в воздухе, состоит преимущественно из молекулярных полос испускания, принадлежащих второй положительной системе полос молекулярного азота и первой отрицательной системе полос ионизованного молекулярного кислорода, благодаря чему свечение концентрируется в сине-зеленой и ультрафиолетовой областях спектра.

Если коронирующий электрод присоединить к положительному полюсу источника питания, то коронный разряд называется положительной короной. При присоединении коронирующего электрода к отрицательному полюсу - отрицательной короной. Практически различия между спектральным составом свечения, возникающего при положительной и отрицательной короне, не существует, хотя есть некоторая разница в самом характере свечения. В случае положительной короны свечение вокруг коронирующего электрода распределяется равномернее, чем при отрицательной короне. В последнем случае свечение сосредоточено у отдельных точек коронирующего электрода. Кроме того, критические потенциалы коронного разряда и искрового пробоя Uп неодинаковы.

Возникновение коронного разряда объясняется, появлением вблизи коронирующего электрода резкой неоднородности электрического поля, значительно превосходящей напряженность электрического поля на других участках воздушного промежутка между электродами. Для возникновения коронного разряда напряженность поля у электрода должна превосходить электрическую прочность воздуха. В результате большой напряженности электрического поля слой воздуха вблизи коронирующего электрода, будет пробит и станет проводящим. При этом около электрода возникает корона. Радиус проводящего слоя возрастает до тех пор, пока на его границе напряженность электрического поля не станет равной электрической прочности воздуха. Таким образом, при коронном разряде пробой газа распространяется не на весь воздушный междуэлектродный промежуток. Если приложенную к электродам разность потенциалов увеличивать сверх критического потенциала U0, то с повышением U - сила разрядного тока быстро увеличивается, а толщина коронирующего слоя около электрода возрастает. Когда разность потенциалов между электродами достигает нового значения Uп, наступает искровой пробой всего газового промежутка.

Обработка результатов

Отрицательная корона

S 3.1

I мкA

1

5

10

15

20

30

45

U кB

3,9

4,5

5

5,5

6

6,3

7

S 3.2

I мкA

1

5

10

15

20

25

29

U кB

4,5

5

5,5

6

6,4

6,8

7

S 3.3

I мкA

1

5

10

15

18

U кB

4,5

5,5

6,3

6,8

7

S 3.4

I мкA

1

5

10

15

20

25

30

35

40

45

50

80

112

U кB

4

4,3

4,5

4,6

4,75

5

5,2

5,4

5,4

5,5

5,6

6,2

7

S 3.5

I мкA

1

5

10

15

20

30

35

45

60

U кB

4,5

4,7

5

5,4

5,6

6

6,3

6,5

7

Положительная корона

S 3.1

I мкA

0,1

5

9

U кB

4,5

6,3

7

S 3.2

I мкA

3

5

6

U кB

5,1

6,6

7

S 3.3

I мкA

2

4

U кB

5,6

7

S 3.4

I мкA

1

5

12

17

27

U кB

4,8

4,9

5

5,4

7

S 3.5

I мкA

1

6

10

15

25

27

U кB

5

5,2

5,5

5,7

6,3

7,8


Расчет значений коэффициента  А

Осуществляется по формуле ,  константа А рассчитывается для каждого значения h (расстояние от иголки до электрода). U0 напряжение возникновения короны.

 

Отрицательная корона

k-=1.6*10-4 м2 /В сек

S 3.1 (H1=5.5 мм, U0 =3,9 кВ)

A= 1,2*108

S 3.2 (H1=6.5 мм, U0 =4,5 кВ)

A= 1,25*108

S 3.3  (H1=8 мм, U0 =4.5 кВ)

A= 5,6*108

S 3.4 (H1=6.5 мм, U0 =4 кВ)

A= 3,125*108

S 3.5  (H1=6.5 мм, U0 =4,5 кВ)

A= 2,26*108

Положительная корона

k+= 1.8 1О-4 м2 /В сек

S 3.1 (H1=5.5 мм, U0 =3,9 кВ)

A= 2,65*109

S 3.2 (H1=6.5 мм, U0 =4,5 кВ)

A=  2,65*109

S 3.3  (H1=8 мм, U0 =4.5 кВ)

A= 2,26*109

S 3.4 (H1=6.5 мм, U0 =4 кВ)

A= 4,06*108

S 3.5  (H1=6.5 мм, U0 =4,5 кВ)

A= 1,9*108

Вывод: при проведении работы было иисследовано возникновение коронного разряда в газах. В результате, из полученных вольт-амперных характеристик следует, что ток возникающий при отрицательной короне тем выше, чем ближе игла в анодной пластине (при том же значении напряжения); и тем выше, чем больше плотность иголок на единицу площади.

 


 

А также другие работы, которые могут Вас заинтересовать

42225. ДОСЛІДЖЕННЯ ЕЛЕМЕНТНОГО СКЛАДУ ОБ'ЄКТІВ ІЗ ВИКОРИСТАННЯМ МАС-СПЕКТРОМЕТРА З ЛАЗЕРНИМ ДЖЕРЕЛОМ ІОНІВ 3.23 MB
  Методика лазерної мас-спектрометрії заснована на аналізі плазми, що утворюється при локальному випаровуванні лазером мікропроби, яка відтворює атомний склад речовини і домішок об'єкта в даному місці. Методикою можна визначити елементний та газовий склад досліджуваного зразка на поверхні та розподіл елементів за глибиною.
42226. ОСНОВНІ ВИМОГИ З ТЕХНІКИ БЕЗПЕКИ 113.5 KB
  Багаторазове вмикання та вимикання приладів призводить до їх псування. Треба вимикати живлення приладів лише після закінчення всіх вимірів. Вивчити принцип роботи порядок вмикання настроювання та проведення вимірів для таких приладів: а генератори низьких Г333 або Г334 та високих...
42227. Операції булевої алгебри 239 KB
  Відповідно до варіанту з таблиці 1 та отриманим теоретичним знанням з операцій булевої алгебри виконати розрахунково-графічну роботу. Звіт про виконання лабораторної роботи написати від руки на аркушах зошита в клітинку.
42228. Моделирование системы массового обслуживания в среде Simulink 27.5 KB
  Источник генерирует последовательность однородных заявок отличающихся моментами времени появления. Интервалы времени между моментами появления заявок являются случайными величинами с известным законом распределения параметры которого остаются постоянными в течение моделируемого интервала времени . Если прибор свободен поступающая в систему заявка берется на обслуживание и генерируется случайный интервал времени соответствующий длительности ее обслуживания если же прибор занят заявка теряется.
42231. ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ ФОРМЫ ПОЛИРОВАННЫХ ПОВЕРХНОСТЕЙ 945 KB
  Если контролируемую поверхность детали совместить с измерительной поверхностью эталона то при несоответствии их формы образуется воздушный промежуток который можно рассматривать как пластинку толщиной h с показателем преломления n=1. Число колец любого но одного цвета характеризует разность стрелок прогиба поверхности детали и эталона. Форма интерференционных колец в сечении параллельном их направлению воспроизводит профиль воздушного зазора между поверхностями детали и эталона. Если кривизна поверхности детали меняется плавно кольца...
42232. ИССЛЕДОВАНИЕ НАГРЕВА КАТУШЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ 44 KB
  Предмет исследования В лабораторной работе исследуются четыре катушки N1. На передней панели стенда расположены исследуемые катушки N1 N4. Каждая катушка включена в соответствующую схему выключателем а в цепи катушки N1 имеется амперметр P1 тип М381 класс точности 15 по которому контролируют значение протекающего через обмотку катушки тока. Катушки N1 и N2 подключаются выключателем SF2 к источнику постоянного напряжения 110 В а катушки N3 и N4 выключателем SF1 к источнику переменного напряжения 220 В.
42233. Методы проведения фотоэлектроколориметрии двухкомпонентных систем 2.19 MB
  Фотоколориметрия основана на измерении поглощения света окрашенными растворами. Отличается от колориметрии тем, что интенсивность поглощения света оценивается не глазом исследователя, а специальными приборами – фотоэлектроколориметрами.