39271

Устройство защиты аппаратуры от аномальных напряжений сети

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Котова Устройство защиты аппаратуры от аварийного напряжения сети Радио 2008 № 8 с. Из сетевого напряжения ограничительным диодом VD2 формируется переменное близкое к прямоугольному напряжение амплитудой около 18 В. Варистор RU1 защищает симистор VS1 от бросков напряжения при коммутации нагрузки индуктивного характера. Контроль величины сетевого напряжения осуществляет встроенный АЦП микроконтроллера DD1.

Русский

2013-10-01

284.32 KB

26 чел.

Устройство защиты аппаратуры от аномальных напряжений сети

Разработанное автором защитное устройство по выполняемым функциям аналогично описанному в статье И. Котова "Устройство защиты аппаратуры от аварийного напряжения сети" ("Радио", 2008, № 8, с. 26, 27). Оно не содержит понижающего трансформатора, а для коммутации нагрузки применен симистор, что повышает быстродействие защиты.

Рис. 1

Предлагаемое устройство отключает нагрузку от сети 220 В как при превышении, так и снижении сетевым напряжением заранее установленных значений. Основой устройства (рис. 1) является микроконтроллер DD1, работающий по программе, коды которой представлены в таблице. Из сетевого напряжения ограничительным диодом VD2 формируется переменное (близкое к прямоугольному) напряжение амплитудой около 18 В. Конденсатор С1 - токозадающий, резистор R3 ограничивает пусковой ток при подключении, a R1 обеспечивает разрядку конденсатора С1 при отключении устройства. Диод VD3 выпрямляет это переменное напряжение, а конденсатор СЗ сглаживает пульсации. Стабилизатор DA1 обеспечивает питание микроконтроллера напряжением 5 В. Варистор RU1 защищает симистор VS1 от бросков напряжения при коммутации нагрузки индуктивного характера.
    Контроль величины сетевого напряжения осуществляет встроенный АЦП микроконтроллера DD1. Для этого напряжение сети предварительно выпрямляется диодом VD1 и через фильтр НЧ R2C2 и резистивный делитель напряжения R4R5 поступает на вход АЦП (вывод 3) микроконтроллера DD1. Конденсатор С4 дополнительно подавляет импульсные помехи. После преобразования в АЦП десятибитный результат сдвигается на один разряд вправо и младший бит игнорируется. В результате данные АЦП имеют разрядность девять бит.


    Подача и отключение сетевого напряжения от нагрузки осуществляются симистором VS1. Для его открывания таймером-счетчиком 1 микроконтроллера DD1 на линии РВ1 (вывод 6) формируются импульсы частотой 10 кГц и коэффициентом заполнения 0,1 (скважность 10). После усиления по току транзистором VT1 эти импульсы через резистор R8 поступают на управляющий электрод симистора VS1. Благодаря высокой частоте управляющих импульсов он открывается в начале каждого полупериода сетевого напряжения, что уменьшает уровень коммутационных помех. Для этой же цели предназначена цепь R6C5. Отключение нагрузки обеспечивается остановкой таймера-счетчика 1 и установкой напряжения низкого уровня на линии РВ1 микроконтроллера DD1.

На десятиразрядном ЖК индикаторе HG1 в трех младших (крайние правые) разрядах отображается напряжение сети, четвертый и пятый - разделительные, они погашены. В шестом, седьмом и восьмом разрядах с периодичностью 1 с поочередно отображаются максимальное и минимальное напряжения отключения. Девятый разряд - разделительный (погашен), а в десятом - отображается время (в секундах), оставшееся до включения нагрузки в случае, когда напряжение сети находится в установленных пределах. Кнопками SB1 и SB2 осуществляют изменение значений пороговых напряжений отключения нагрузки минимального и максимального соответственно. При одновременном нажатии на эти кнопки отображается значение изменяемого сетевого напряжения, а после их отпускания - возвращается к чередованию минимального и максимального напряжений отключения.
   При нажатии на кнопку SB1 "Мин." минимальный порог отключения каждую секунду изменяется от 160 до 210 В с шагом 5 В. Если ее удерживать длительное время, после достижения максимального значения (210 В) устанавливается минимальное (160 В) и затем снова увеличивается. Аналогично при нажатии на кнопку SB2 "Макс." периодически изменяется значение максимального порога от 230 до 255 В с шагом 5 В.
   Если напряжение сети выходит за установленные пороговые значения, нагрузка в течение 10 мс отключается от сети, а в старшем - индицируется цифра 7. После возвращения напряжения в норму в этом разряде отображается обратный отсчет семисекундного временного интервала, по истечении которого нагрузка будет подключена к сети, а разряд погашен. Если во время отсчета произойдет выход сетевого напряжения за установленные пределы, нагрузка останется в выключенном состоянии, а отсчет интервала начнется заново.
   Поскольку число линий порта микроконтроллера DD1 ограничено, сигналы данных и синхронизации на ЖК индикатор HG1 передаются по однопроводному интерфейсу с времяимпульсным кодированием (длительность передачи единичного разряда примерно в десять раз больше, чем нулевого). Напряжение питания индикатора (около 1,5 В) снимается со светодиода HL1, который работает как ограничитель напряжения.

Рис. 2


   Все детали, кроме кнопок, установлены на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5...2 мм, чертеж которой показан на рис. 2. Кнопки крепят на передней панели корпуса, выполненного из изоляционного материала. Для них делают крепежные отверстия, а для индикатора - окно. Сам индикатор закреплен на плате с помощью стоек высотой около 40 мм.
   Применены резисторы МЛТ, С2-23, оксидные конденсаторы - импортные, С1, С5 - К73-17, С4, С7 - К10-17. Дроссель - ДМ-0,1 индуктивностью 500 мкГн, кнопки - КМ-1 или аналогичные с самовозвратом.
   Для налаживания устройство вместе с образцовым вольтметром подключают к сети и подборкой резистора R5 добиваются на ЖК индикаторе устройства показаний сетевого напряжения, соответствующих показаниям эталонного вольтметра. При налаживании следует учитывать, что все элементы устройства находятся под напряжением сети.


 

А также другие работы, которые могут Вас заинтересовать

21704. Модуль Нейрокибернетика 380 KB
  В первом случае сформированная нейронная сеть выступает в роли регрессионной модели и имеет k входов и один выход то есть в качестве входных значений нейронной сети выступают предшествующие значения котировок а в качестве выхода значение на текущий момент. В автоматическом управлении нейронные сети так же не плохо справляются со своей задачей и если учесть что не нужно проводить сложных расчетов то выбор в пользу использования нейронных сетей становиться очевидным. Так же нейронные сети находят практическое применение при диагностике...
21705. Технология личностного ориентирования в географии 103.5 KB
  Содержание личностно-ориентированного образования, его средства и методы структурируются так, что позволяют ученику проявить избирательность к предметному материалу, его виду и форме, в этих целях разрабатываются индивидуальные программы обучения, которые моделируют исследовательское мышление.
21706. Методы экспертного оценивания 136 KB
  5] Анализ компетентности экспертов по взаимооценкам [0.6] Анализ компетентности экспертов по оценкам объектов [0. Типичные ситуации группового выбора: распределение конкурсной комиссией поощрений; обсуждение и согласование нескольких альтернативных законопроектов; ранжирование по перспективности внедрения образцов новых промышленных изделий производимое группой экспертов. Например для 3х объектов предпочтение одного из экспертов или он может количественно выразить интенсивность ; ; .
21707. Разделы модуля «Базовые понятия. Методы извлечения знаний» 368 KB
  Методы извлечения знаний [1] История и этапы развития искусственного интеллекта [2] Подходы к созданию систем искусственного интеллекта [3] Искусственный интеллект в России [4] Направления развития искусственного интеллекта [5] Основные определения [6] Методы извлечения знаний [7] Классификация методов извлечения знаний [8] Пассивные методы [9] Наблюдения [10] Анализ протоколов мыслей вслух [11] Лекции [12] Активные методы [13] Активные индивидуальные методы [14] Анкетирование [15] Интервью [16] Свободный диалог [17] Активные групповые методы...
21708. Модуль Жизненный цикл интеллектуальной системы 147.5 KB
  2] Этап 2: Разработка прототипной системы [1.4] Этап 4: Оценка системы [1.5] Этап 5: Стыковка системы [1.
21709. Модуль Методы представления знаний: Нечеткая логика 192 KB
  Математический аппарат Характеристикой нечеткого множества выступает функция принадлежности Membership Function. Обозначим через MFcx – степень принадлежности к нечеткому множеству C представляющей собой обобщение понятия характеристической функции обычного множества. Значение MFcx=0 означает отсутствие принадлежности к множеству 1 – полную принадлежность. Так чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 080.
21711. Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей 181.5 KB
  Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей Для решения широкого класса задач эксплуатации и проектирования с учётом фактора надёжности необходимо определение вероятностей возникновения возможных последствий от нарушения электроснабжения потребителей которые сводятся к следующим: вероятность возникновения катастрофических и аварийных ситуаций исследование которых необходимо для нормирования надёжности электроснабжения; вероятность возникновения отдельных составляющих ущерба их величина и...
21712. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. КОНТРОЛЬНЫЕ ИСПЫТАНИЯ 2.49 MB
  Показатели надежности экспериментальными методами могут быть получены по результатам либо испытаний – специальных или совмещенных либо наблюдением за функционированием объекта в условиях эксплуатации. Методы испытаний организуются специально с целью определения показателей надежности объем их обычно заранее планируется условия функционирования объектов устанавливаются исходя из требований оценки конкретных показателей. Показатели надежности таких объектов оцениваются в основном либо по результатам совмещенных испытаний при которых...