39317

Устройство сбора данных (УСД)

Курсовая

Информатика, кибернетика и программирование

АЦП: имеет один аналоговый вход и восемь выходов по которым в двоичном параллельном коде выдаётся число соответствующее уровню поданного на вход АЦП отсчёта аналогового сигнала. Перед началом работы АЦП на него должен быть подан сигнал запуска. После окончания преобразования АЦП выдаёт сигнал ОК окончание преобразования на устройство управления. Сигнал ОК флаг обозначается как Тфл должен быть зафиксирован с помощью триггера до момента окончания записи данных опрашиваемого канала в ячейку памяти ОЗУ.

Русский

2013-10-02

270.5 KB

2 чел.

Московский технический университет связи и информатики.

Кафедра вычислительной техники и управляющих систем.

Курсовая работа

на тему:

Устройство сбора данных

                                                                                      Выполнил: Карпов С.М.

                                                                             Вариант № 9

                                                                                Группа: КТ0401

                                                                                           Проверила: Онуприенко З.С.

Москва 2006 год

  1.  Задание.

   Спроектировать устройство сбора данных (УСД). Имеется F аналоговых информационных каналов. Необходимо, последовательно опрашивая их, получаемые из каналов аналоговые величины с помощью АЦП преобразовывать в цифровую форму (в двоичные слова стандартной длины 1 байт – 8 бит) и помещать в последовательные ячейки некоторой области основной памяти ОЗУ, начиная с ячейки, имеющей адрес G.

    Цифровая процессорная система, фрагментом которой является проектируемое УСД, в своём составе имеет ОЗУ ёмкостью Q с форматом адресного слова два байта в зависимости от Q.

    Синхронизация работы процессорного устройства осуществляется от генератора тактовых импульсов (ГТИ). Частота синхроимпульсов f=500 кГц.

    Требуется:

  1.  Разработать систему формирования адресов ячеек ОЗУ и номеров опрашиваемых каналов.
  2.  Реализовать УСД в виде процессорного устройства, построенного на принципах схемной логики, и привести его функционально-логическую схему.
  3.  Синтезировать схему управляющего устройства.
  4.  Составить полную электрическую схему УСД.

    Исходные данные.

     Количество опрашиваемых каналов F10=13

     Ёмкость памяти Q=8192 х 8

     Начальный адрес ячейки памяти G16=01АЕ

     Двухразрядные коды состояния УУ: a0=00; a1=11; a2=10; a3=01

     Порядок опроса каналов: 2, 1, 3, 6, 5, 4, 0, 9, 11, 7, 8, 10,13

  1.  Реализация УСД на принципиальной схемной логике.

2.1. Структурная схема и состав УСД.

Рисунок 1.

В состав УСД входят:

    Мультиплексор (MS): имеет F аналоговых входов и m управляющих (адресных) входов. При подаче на адресный вход двоичного числа – адреса – происходит подключение одного из аналоговых каналов, имеющих данный адрес, к выходу MS. Число опрашиваемых анаолговых каналов связано с числом адресных входов k=2m.

    АЦП: имеет один аналоговый вход и восемь выходов, по которым в двоичном параллельном коде выдаётся число, соответствующее уровню поданного на вход АЦП отсчёта аналогового сигнала. Перед началом работы АЦП на него должен быть подан сигнал запуска.

    АЦП выполняет преобразования за несколько тактов. После окончания преобразования АЦП выдаёт сигнал ОК (окончание преобразования) на устройство управления. Сигнал ОК – флаг (обозначается как Тфл), должен быть зафиксирован с помощью триггера до момента окончания записи данных опрашиваемого канала в ячейку памяти ОЗУ.

    MS и АЦП берутся как стандартные схемы с соответствующими характеристиками.

    Устройство управления на некоторых тактовых интервалах с учётом осведомительных сигналов, поступающих от других устройств (такие сигналы будем обозначать Xi), формирует управляющие сигналы Yn, кторые обеспечивают запуск других устройств и согласовааную их работу.

2.2. Разработка блока выработки адреса ЗУ.

    Требуется синтезировать устройство, которое могло бы, начиная с определённого начального адреса, производить формирование последующих адресов, отличающихся друг от друга на единицу. Длина адресного слова определяется ёмкостью памяти.

    Ёмкость памяти Q = 8192 = 213

    Начальный адрес ячейки памяти G16 = 01АЕ = 0000 0001 1010 1110

    Следовательно длина адресного слова равна 13, и блок будет содержать четыре четырёхразрядных суммирующих двоичных счётчика с предустановкой.

Рисунок 2.

2.3.Разработка блока выработки адресов каналов коммутатора.

   Проектирование блока производится с использованием четырёхразрядного двоичного счётчика, последовательно генерирующего двоичные адресные числа от 0 до 11 с перекодированием данной последовательности с помощью дешифратора (DC) и шифратора (CD). После опроса всех каналов, когда с выхода счётчика поступила последовательность 10112 = 1110, срабатывает схема прерывания счёта и формируется сигнал сброса счётчика в ноль.

   Порядок опроса каналов: 2, 1, 3, 6, 5, 4, 0, 9, 11, 7, 8, 10  

Рисунок 3.

2.4. Синтез управляющего устройства.

2.4.1. Общая структурная схема УУ и принцип его работы.

Рисунок 4.

    УСД состоит из двух основных узлов: операционного узла (ОУ) и узла управления (УУ) (рис.4). ОУ – эо устройство, в котором непосредственно выполняются операции, реализуемые процессором.

    На вход ОУ поступают данные с выхода АЦП, представленные в виде параллельного двоичного кода, а преобразования, осуществляемые в ОУ, состоят в приёме этих данных из того или иного аналогового канала и пересылки их в требуемые ячейки операционной памяти.

    УУ в определённой последовательности формирует управляющие сигналы y1, y2,… и с их помощью координирует работу элементов схемы ОУ, обеспечивая в нём требуемую обработку информации. Под действием каждого из сигналов в элементе ОУ производятся некоторые элементарные действия, называемые микрооперациями. К числу таких дейтвий относятся разрешение записи данных в память, приведение в исходное состояние счётчика и т.п.

    УУ работает под действием команд – двоичных кодов, подаваемых на входы Z1, Z2,… На входы X1, X2,… УУ поступают осведомительные сигналы, иначе называемые условиями или признаками, которые формируют ОУ и влияют на последующие этапы преобразования операндов в зависимости от результатов, полученных в ОУ при выполнении предыдущей микрокоманды.

Описание работы УСД:

1. Начало цикла сбора данных. В счётчиках СТ21 блока выработки адресов ячеек памяти производится запись адреса первой ячейки области памяти ЗУ, отведённой для хранения данных. Сигнал Y2 – разрешение записи начального адреса G в СТ21.

2. Счётчик СТ22 блока выработки номера канала сбрасывается в ноль. Сигнал Y1 – сброс СТ22 в ноль.

3. Произодится сброс в ноль триггера Тфл (гашение флага). Сигнал Y3 – сброс Тфл в состояние “0”.

4. Адрес аналогового канала из СТ22 выдаётся на адресные входы коммутатора. Коммутатор подключает первый опрашиваемый канал к входу АЦП. Сигнал Y4 – разрешение передачи адреса аналогового канала на коммутатор.

5. Производится запуск АЦП, и в нём начинается процесс аналого-цифрового преобразования. Сигнал Y5 – запуск АЦП.

6. Проверяется содержимое триггера. Пока триггер находится в состоянии “0”, устройство пребывает в режиме ожидания окончания преобразования в АЦП. По окончании преобразования АЦП вырабатывает сигнал ОК, устанавливая триггер в состояние “1”. С установлением триггера в состояние “1”, при наличии разрешающего сигнала, осуществляется запись данных с выхода АЦП в требуемую ячейку памяти. Сигнал Y6 – разрешение записи данных из АЦП в ЗУ.

7. В СТ21 подготавливается адрес следующей ячейки ЗУ путём прибавления единицы к содержимому счётчика (к адресу предыдущей ячейки). Сигнал Y7 – приращение содержимого счётчика на единицу.

8. В СТ22 формируется адрес следующего аналогового канала путём прибавления единицы к содержимому счётчика. Сигнал Y8 – приращение содержимого счётчика СТ22 на единицу.

9. Проверяется содержимое счётчика СТ22. Если содержимое счётчика 0, то операции 3 – 8 повторяются. В противном случае происходит завершение цикла сбора данных.     

 

В процессе выполнения цикла сбора данных в ЗУ вырабатывается осведомительные сигналы (признаки): сигнал Х1 = 1  - сигнал ОК и сигнал Х2 = 1 – завершение цикла сбора данных.

 

2.4.2. Блок-схема алгоритма функционирования ЦУ в микрооперациях и микрокомандах

    На основе изложенного выше цикла сбора данных составляем блок-схему алгоритма функционирования (рис.5)

Рисунок 5.

 

  Анализ алгоритма показывает, что микрооперации у1, у2; а также у3, у4, у5 и у6, у7, у8 не зависят друг от друга и могут выполняться одновременно в одном такте. Таким образом, эти микрооперации в группах могут быть объединены в микрокоманды. На основании этого можно составить блок схему алгоритма в микрокомандах (рис.6)

Рисунок 6.

     Произведём разметку блок-схемы. Начало и конец блок-схемы обозначим а0, что соответствует исходному состоянию управляющего автомата (УУ). Вход каждого блока, следующего за операторными блоками, которые имеют прямоугольную форму, помечаем символами а1, а2, а3, соответствующими последующим состояниям УУ.

2.4.3. Построение графа функционирования УСД.

     На основе произведённой выше разметки блок-схемы алгоритма построим граф функционирования УСД.

Рисунок 7.

    Каждому из состояний а0, а1, а2,а3 управляющего автомата соответствует узел графа. Дугами графа изображены переходы автомата из одного состояния в другое. Возле каждой дуги указано условие (если оно есть) перехода Х и выполняемая на данном тактовом интервале микрокоманда Y.

    Переходы синхронного автомата из одного состояния в другое происходят в тактовый момент времени под действием синхроимпульсов, если условия перехода отсутствуют или эти условия выполняются. Если же условия не выполняются, то УУ работает в режиме ожидания. При поступлении осведомительного сигнала на тактовом интервале переход в новое состояние осуществляется при приходе следующего тактового импульса.

2.4.4. Этап структурного синтеза.

    Управляющее устройство состоит из комбинированного цифрового устройства (КЦУ) и из запоминающего устройства (ЗУ), которое в свою очередь состоит из двух JK триггеров.

Рисунок 8.

    Для обеспечения перехода JK триггера из состояния a(t) в новое состояние a(t+1), на входы J и K подаются определённые сигналы возбуждения (таблица 1).

Таблица 1.

Вид перехода

Входные сигналы

Q(t)

Q(t+1)

J(t)

K(t)

0

0

0

-

0

1

1

-

1

0

-

1

1

1

-

0

    Сигналы Х1, Х2, Q1, Q2 выступают в роли аргументов, а J1, J2, K1, K2, Y1, Y2, Y3 являются логическими функциями, которые должен реализовать аппаратурно КЦУ. Для синтеза КЦУ составим таблицу функционирования УУ, используя заданные двухразрядные коды состояния УУ и таблицу 1.

Таблица 2.

Условия

перехода

Предыдущее

состояние

a(t), Q(t)

Следующее

состояние

a(t+1), Q(t+1)

Сигналы

возбуждения

триггера

Выполняемая

микрокоманда

X1

X2

ai

Q2

Q1

ai

Q2

Q1

J2

K2

J1

K1

Y1

Y2

Y3

1

-

-

a0

0

0

a1

1

1

1

-

1

-

1

0

0

2

-

-

a1

1

1

a2

1

0

-

0

-

1

0

1

0

3

0

-

a2

1

0

a2

1

0

0

-

-

0

0

0

0

4

1

-

a2

1

0

a3

0

1

1

-

-

1

0

0

1

5

-

0

a3

0

1

a3

1

1

-

0

0

-

0

0

0

6

-

1

a3

0

1

a0

0

0

-

1

0

-

0

0

0

На основании данных, приведённых в таблице 2, произведём синтез схемы КЦУ для сигналов возбуждения триггеров и сигналов команд. При синтезе будем использовать карты Карно.

1. Синтез J2

J2= Ō1·Ō2 v X1·Q1· Ō2

2. Синтез K2

K2= Q1·Q2 v X2·Ō1·Q2

3. Синтез J1

J1= Ō1·Ō2

4. Синтез K1

K1= X1·Q1· Ō2

5. Синтез Y1

Y1= Ō1·Ō2

6. Синтез Y2

Y2=Q1·Q2

7. Синтез Y3

Y3= X1·Q1· Ō2

    На основе полученных с помощью карт Карно выражений построим обобщённую структурную схему КЦУ в базисах И-ИЛИ-НЕ (рис.9)

Рисунок 9.


 

А также другие работы, которые могут Вас заинтересовать

45941. Назначение и виды валов и осей. Типы соединения вала с установленными на нем деталями. Технические требования к рабочим поверхностям вала. Расчет вала на прочность по напряжению изгиба и кручения 28.5 KB
  Валы в отличие от осей предназначены для передачи вращающих моментов и в большинстве случаев для поддержания вращающихся вместе с ними относительно подшипников различных деталей машин. Валы несущие на себе детали через которые передается вращающий момент воспринимают от этих деталей нагрузки и следовательно работают одновременно на изгиб и кручение. При действии на установленные на валах детали осевых нагрузок валы дополнительно работают на растяжение или сжатие. Прямые валы в зависимости от...
45942. Муфты. Виды соединительных муфт. Особенности их назначения и эксплуатации 28.5 KB
  Муфты. Муфты приводов осуществляют соединение валов концы которых подходят один к другому вплотную или разведены на небольшое расстояние причем соединение должно допускать передачу вращающего момента от одного вала к другом. Муфты приводов подразделяются на четыре класса Класс 1 нерасцепляемые муфты в которых ведущая и ведомая полумуфты соединены между собой постоянно. Класс 2 управляемые муфты позволяющие сцеплять и расцеплять ведущий и ведомый валы как во время их остановки так и во время работы на ходу.
45943. Подшипники скольжения. Виды подшипников по назначению и воспринимаемой нагрузке. Типовые элементы конструкции. Материалы вкладышей 29 KB
  В зависимости от рода трения в подшипнике различают подшипники скольжения в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника и подшипники качения в которых развивается трение качения благодаря установке шариков или роликов между опорными поверхностями оси или вала и подшипника. В зависимости от направления воспринимаемой нагрузки подшипники скольжения различают: радиальные для восприятия радиальных т. При одновременном действии на ось или вал радиальных и осевых нагрузок обычно применяют сочетание...
45944. Подшипники качения. Классификация и краткая характеристика их применяемости. Расчетная долговечность и коэффициент работоспособности 28.5 KB
  Методы регулировки зазора в подшипниках качения. Подшипники качения состоят из наружного и внутреннего колец с дорожками качения; шариков или роликов которые катятся по дорожкам качения колец; сепаратора разделяющего и направляющего шарики или ролики что обеспечивает их правильную работу. По форме тел качения различают шариковые и роликовые подшипники.
45945. Основные типы деформации деталей машин и примеры их реализации 36 KB
  Основные типы деформации деталей машин и примеры их реализации Деформация это изменение формы и размера тела после приложения внешних нагрузок. Деформация зависит от характера приложенной нагрузки. Обычно деформация кручения сопровождается другими деформациями например изгибом; 5 изгиб возникает при действии на деталь сосредоточенной или распределённой сил перпендик. Сила Ft= ; Ft деформация кручения Frизгиб балки.
45947. Чугуны: классификация, маркировка, химический состав, механические и технологические свойства, применение 23.06 KB
  Чугуны нашли широкое применение в качестве машиностроительных материалов благодаря сочетанию высоких литейных свойств достаточной прочности износостойкости а так же относительной дешевизны. Чугуны используются для производства качественных отливок сложной формы станины станков корпуса приборов и т. В зависимости от того в какой форме присутствует углерод в сплаве чугуны подразделяются на белый серый ковкий высокопрочный и легированный обладающий особыми свойствами жаропрочностью антифрикционностью и т. Белые литейные чугуны.
45948. Конструкционные стали: классификация, маркировка, химический состав, механические и технологические свойства, применение 50.2 KB
  Конструкционные стали: классификация маркировка химический состав механические и технологические свойства применение. Широкое использование стали в промышленности обусловлено сочетанием комплекса механических физикохимических и технологических свойств. Сталью называются сплавы железа с углеродом и некоторыми другими элементами причем углерода в стали должно содержаться меньше 214 . Постоянными примесями в стали являются: кремний до 04 марганец до 08 сера до 005 фосфор до 005 и газы NOH и др.
45949. Инструментальные стали: классификация, маркировка, свойства, применение 24.34 KB
  Инструментальные стали: классификация маркировка свойства применение. ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ. Инструментальные стали предназначены для изготовления режущего измерительного инструмента и штампов холодного и горячего деформирования. Основные свойства которыми должны обладать инструментальны стали: износостойкость прочность при удовлетворительной вязкости теплостойкость прокаливаемость и хорошая обрабатываемость давлением и резанием.