39317

Устройство сбора данных (УСД)

Курсовая

Информатика, кибернетика и программирование

АЦП: имеет один аналоговый вход и восемь выходов по которым в двоичном параллельном коде выдаётся число соответствующее уровню поданного на вход АЦП отсчёта аналогового сигнала. Перед началом работы АЦП на него должен быть подан сигнал запуска. После окончания преобразования АЦП выдаёт сигнал ОК окончание преобразования на устройство управления. Сигнал ОК флаг обозначается как Тфл должен быть зафиксирован с помощью триггера до момента окончания записи данных опрашиваемого канала в ячейку памяти ОЗУ.

Русский

2013-10-02

270.5 KB

2 чел.

Московский технический университет связи и информатики.

Кафедра вычислительной техники и управляющих систем.

Курсовая работа

на тему:

Устройство сбора данных

                                                                                      Выполнил: Карпов С.М.

                                                                             Вариант № 9

                                                                                Группа: КТ0401

                                                                                           Проверила: Онуприенко З.С.

Москва 2006 год

  1.  Задание.

   Спроектировать устройство сбора данных (УСД). Имеется F аналоговых информационных каналов. Необходимо, последовательно опрашивая их, получаемые из каналов аналоговые величины с помощью АЦП преобразовывать в цифровую форму (в двоичные слова стандартной длины 1 байт – 8 бит) и помещать в последовательные ячейки некоторой области основной памяти ОЗУ, начиная с ячейки, имеющей адрес G.

    Цифровая процессорная система, фрагментом которой является проектируемое УСД, в своём составе имеет ОЗУ ёмкостью Q с форматом адресного слова два байта в зависимости от Q.

    Синхронизация работы процессорного устройства осуществляется от генератора тактовых импульсов (ГТИ). Частота синхроимпульсов f=500 кГц.

    Требуется:

  1.  Разработать систему формирования адресов ячеек ОЗУ и номеров опрашиваемых каналов.
  2.  Реализовать УСД в виде процессорного устройства, построенного на принципах схемной логики, и привести его функционально-логическую схему.
  3.  Синтезировать схему управляющего устройства.
  4.  Составить полную электрическую схему УСД.

    Исходные данные.

     Количество опрашиваемых каналов F10=13

     Ёмкость памяти Q=8192 х 8

     Начальный адрес ячейки памяти G16=01АЕ

     Двухразрядные коды состояния УУ: a0=00; a1=11; a2=10; a3=01

     Порядок опроса каналов: 2, 1, 3, 6, 5, 4, 0, 9, 11, 7, 8, 10,13

  1.  Реализация УСД на принципиальной схемной логике.

2.1. Структурная схема и состав УСД.

Рисунок 1.

В состав УСД входят:

    Мультиплексор (MS): имеет F аналоговых входов и m управляющих (адресных) входов. При подаче на адресный вход двоичного числа – адреса – происходит подключение одного из аналоговых каналов, имеющих данный адрес, к выходу MS. Число опрашиваемых анаолговых каналов связано с числом адресных входов k=2m.

    АЦП: имеет один аналоговый вход и восемь выходов, по которым в двоичном параллельном коде выдаётся число, соответствующее уровню поданного на вход АЦП отсчёта аналогового сигнала. Перед началом работы АЦП на него должен быть подан сигнал запуска.

    АЦП выполняет преобразования за несколько тактов. После окончания преобразования АЦП выдаёт сигнал ОК (окончание преобразования) на устройство управления. Сигнал ОК – флаг (обозначается как Тфл), должен быть зафиксирован с помощью триггера до момента окончания записи данных опрашиваемого канала в ячейку памяти ОЗУ.

    MS и АЦП берутся как стандартные схемы с соответствующими характеристиками.

    Устройство управления на некоторых тактовых интервалах с учётом осведомительных сигналов, поступающих от других устройств (такие сигналы будем обозначать Xi), формирует управляющие сигналы Yn, кторые обеспечивают запуск других устройств и согласовааную их работу.

2.2. Разработка блока выработки адреса ЗУ.

    Требуется синтезировать устройство, которое могло бы, начиная с определённого начального адреса, производить формирование последующих адресов, отличающихся друг от друга на единицу. Длина адресного слова определяется ёмкостью памяти.

    Ёмкость памяти Q = 8192 = 213

    Начальный адрес ячейки памяти G16 = 01АЕ = 0000 0001 1010 1110

    Следовательно длина адресного слова равна 13, и блок будет содержать четыре четырёхразрядных суммирующих двоичных счётчика с предустановкой.

Рисунок 2.

2.3.Разработка блока выработки адресов каналов коммутатора.

   Проектирование блока производится с использованием четырёхразрядного двоичного счётчика, последовательно генерирующего двоичные адресные числа от 0 до 11 с перекодированием данной последовательности с помощью дешифратора (DC) и шифратора (CD). После опроса всех каналов, когда с выхода счётчика поступила последовательность 10112 = 1110, срабатывает схема прерывания счёта и формируется сигнал сброса счётчика в ноль.

   Порядок опроса каналов: 2, 1, 3, 6, 5, 4, 0, 9, 11, 7, 8, 10  

Рисунок 3.

2.4. Синтез управляющего устройства.

2.4.1. Общая структурная схема УУ и принцип его работы.

Рисунок 4.

    УСД состоит из двух основных узлов: операционного узла (ОУ) и узла управления (УУ) (рис.4). ОУ – эо устройство, в котором непосредственно выполняются операции, реализуемые процессором.

    На вход ОУ поступают данные с выхода АЦП, представленные в виде параллельного двоичного кода, а преобразования, осуществляемые в ОУ, состоят в приёме этих данных из того или иного аналогового канала и пересылки их в требуемые ячейки операционной памяти.

    УУ в определённой последовательности формирует управляющие сигналы y1, y2,… и с их помощью координирует работу элементов схемы ОУ, обеспечивая в нём требуемую обработку информации. Под действием каждого из сигналов в элементе ОУ производятся некоторые элементарные действия, называемые микрооперациями. К числу таких дейтвий относятся разрешение записи данных в память, приведение в исходное состояние счётчика и т.п.

    УУ работает под действием команд – двоичных кодов, подаваемых на входы Z1, Z2,… На входы X1, X2,… УУ поступают осведомительные сигналы, иначе называемые условиями или признаками, которые формируют ОУ и влияют на последующие этапы преобразования операндов в зависимости от результатов, полученных в ОУ при выполнении предыдущей микрокоманды.

Описание работы УСД:

1. Начало цикла сбора данных. В счётчиках СТ21 блока выработки адресов ячеек памяти производится запись адреса первой ячейки области памяти ЗУ, отведённой для хранения данных. Сигнал Y2 – разрешение записи начального адреса G в СТ21.

2. Счётчик СТ22 блока выработки номера канала сбрасывается в ноль. Сигнал Y1 – сброс СТ22 в ноль.

3. Произодится сброс в ноль триггера Тфл (гашение флага). Сигнал Y3 – сброс Тфл в состояние “0”.

4. Адрес аналогового канала из СТ22 выдаётся на адресные входы коммутатора. Коммутатор подключает первый опрашиваемый канал к входу АЦП. Сигнал Y4 – разрешение передачи адреса аналогового канала на коммутатор.

5. Производится запуск АЦП, и в нём начинается процесс аналого-цифрового преобразования. Сигнал Y5 – запуск АЦП.

6. Проверяется содержимое триггера. Пока триггер находится в состоянии “0”, устройство пребывает в режиме ожидания окончания преобразования в АЦП. По окончании преобразования АЦП вырабатывает сигнал ОК, устанавливая триггер в состояние “1”. С установлением триггера в состояние “1”, при наличии разрешающего сигнала, осуществляется запись данных с выхода АЦП в требуемую ячейку памяти. Сигнал Y6 – разрешение записи данных из АЦП в ЗУ.

7. В СТ21 подготавливается адрес следующей ячейки ЗУ путём прибавления единицы к содержимому счётчика (к адресу предыдущей ячейки). Сигнал Y7 – приращение содержимого счётчика на единицу.

8. В СТ22 формируется адрес следующего аналогового канала путём прибавления единицы к содержимому счётчика. Сигнал Y8 – приращение содержимого счётчика СТ22 на единицу.

9. Проверяется содержимое счётчика СТ22. Если содержимое счётчика 0, то операции 3 – 8 повторяются. В противном случае происходит завершение цикла сбора данных.     

 

В процессе выполнения цикла сбора данных в ЗУ вырабатывается осведомительные сигналы (признаки): сигнал Х1 = 1  - сигнал ОК и сигнал Х2 = 1 – завершение цикла сбора данных.

 

2.4.2. Блок-схема алгоритма функционирования ЦУ в микрооперациях и микрокомандах

    На основе изложенного выше цикла сбора данных составляем блок-схему алгоритма функционирования (рис.5)

Рисунок 5.

 

  Анализ алгоритма показывает, что микрооперации у1, у2; а также у3, у4, у5 и у6, у7, у8 не зависят друг от друга и могут выполняться одновременно в одном такте. Таким образом, эти микрооперации в группах могут быть объединены в микрокоманды. На основании этого можно составить блок схему алгоритма в микрокомандах (рис.6)

Рисунок 6.

     Произведём разметку блок-схемы. Начало и конец блок-схемы обозначим а0, что соответствует исходному состоянию управляющего автомата (УУ). Вход каждого блока, следующего за операторными блоками, которые имеют прямоугольную форму, помечаем символами а1, а2, а3, соответствующими последующим состояниям УУ.

2.4.3. Построение графа функционирования УСД.

     На основе произведённой выше разметки блок-схемы алгоритма построим граф функционирования УСД.

Рисунок 7.

    Каждому из состояний а0, а1, а2,а3 управляющего автомата соответствует узел графа. Дугами графа изображены переходы автомата из одного состояния в другое. Возле каждой дуги указано условие (если оно есть) перехода Х и выполняемая на данном тактовом интервале микрокоманда Y.

    Переходы синхронного автомата из одного состояния в другое происходят в тактовый момент времени под действием синхроимпульсов, если условия перехода отсутствуют или эти условия выполняются. Если же условия не выполняются, то УУ работает в режиме ожидания. При поступлении осведомительного сигнала на тактовом интервале переход в новое состояние осуществляется при приходе следующего тактового импульса.

2.4.4. Этап структурного синтеза.

    Управляющее устройство состоит из комбинированного цифрового устройства (КЦУ) и из запоминающего устройства (ЗУ), которое в свою очередь состоит из двух JK триггеров.

Рисунок 8.

    Для обеспечения перехода JK триггера из состояния a(t) в новое состояние a(t+1), на входы J и K подаются определённые сигналы возбуждения (таблица 1).

Таблица 1.

Вид перехода

Входные сигналы

Q(t)

Q(t+1)

J(t)

K(t)

0

0

0

-

0

1

1

-

1

0

-

1

1

1

-

0

    Сигналы Х1, Х2, Q1, Q2 выступают в роли аргументов, а J1, J2, K1, K2, Y1, Y2, Y3 являются логическими функциями, которые должен реализовать аппаратурно КЦУ. Для синтеза КЦУ составим таблицу функционирования УУ, используя заданные двухразрядные коды состояния УУ и таблицу 1.

Таблица 2.

Условия

перехода

Предыдущее

состояние

a(t), Q(t)

Следующее

состояние

a(t+1), Q(t+1)

Сигналы

возбуждения

триггера

Выполняемая

микрокоманда

X1

X2

ai

Q2

Q1

ai

Q2

Q1

J2

K2

J1

K1

Y1

Y2

Y3

1

-

-

a0

0

0

a1

1

1

1

-

1

-

1

0

0

2

-

-

a1

1

1

a2

1

0

-

0

-

1

0

1

0

3

0

-

a2

1

0

a2

1

0

0

-

-

0

0

0

0

4

1

-

a2

1

0

a3

0

1

1

-

-

1

0

0

1

5

-

0

a3

0

1

a3

1

1

-

0

0

-

0

0

0

6

-

1

a3

0

1

a0

0

0

-

1

0

-

0

0

0

На основании данных, приведённых в таблице 2, произведём синтез схемы КЦУ для сигналов возбуждения триггеров и сигналов команд. При синтезе будем использовать карты Карно.

1. Синтез J2

J2= Ō1·Ō2 v X1·Q1· Ō2

2. Синтез K2

K2= Q1·Q2 v X2·Ō1·Q2

3. Синтез J1

J1= Ō1·Ō2

4. Синтез K1

K1= X1·Q1· Ō2

5. Синтез Y1

Y1= Ō1·Ō2

6. Синтез Y2

Y2=Q1·Q2

7. Синтез Y3

Y3= X1·Q1· Ō2

    На основе полученных с помощью карт Карно выражений построим обобщённую структурную схему КЦУ в базисах И-ИЛИ-НЕ (рис.9)

Рисунок 9.


 

А также другие работы, которые могут Вас заинтересовать

38551. ШЛЯХИ ВДОСКОНАЛЕННЯ МАРКЕТИНГОВОЇ ДІЯЛЬНОСТІ ТОВ «ЧАЙКА» 1.47 MB
  Ефективність управління маркетинговою діяльністю фірми визначається досягненням концепцією маркетингової взаємодії таких цілей: максимально можливого рівня споживання; максимально широкий вибір товарів, які надаються споживачам; максимальне підвищення якості життя суспільства в цілому та його окремих членів
38552. Розробка заходів щодо зниження викидів прокатного виробництва на стан навколишнього середовища на прикладі прокатного цеху ВАТ «Донецький Металургійний завод» 1.45 MB
  Аналіз складу викидів в атмосферу свідчить що в 2008 році в порівнянні з 2000 роком знизилися викиди оксиду вуглецю на 12 діоксиду сірки на 44 і пилу на 37 однак при цьому зросли викиди зєднань азоту на 48 . Жителі промислових центрів дихають не тільки пилом але і важкими металами фенолом фтористим воднем бензапіреном діоксидом азоту і іншими сполуками. По найбільш небезпечних інгредієнтах: діоксиду азоту пилу бензапірену і формальдегіду рівень забруднення атмосфери залишається високим. Як паливо використовується...
38553. Информационное и программное обеспечение для решения задач автоматизации хранения и обработки информации при организации работы парабанковского предприятия 2.58 MB
  Объединение компьютеров в сети позволило значительно повысить производительность труда. Именно здесь происходит соединение трех основных элементов этого процесса и достигается его главная цель производства предметов труда оказание услуг либо техникоэкономическое обеспечение и управление этими процессами. От того как организованы рабочие места во многом зависит эффективность использования самого труда орудий и средств производства и соответственно производительность труда себестоимость выпускаемой продукции ее качество и многие...
38554. Процесс взаимного формирования массовой культуры и социума, состоящего из потребителей продуктов этой культуры 55 KB
  Таков социальнопсихологический аспект механизма потребления производства медиапродукта.Достижения этой индустрии сегодня позволяют продюсерам не только быть посредниками между интересами потребителей и творчеством производителей но и с одной стороны формировать эти интересы а с другой создавать медиапроекты являющиеся оптимальными для конкретной социальной коньюктуры духовными продуктами. Медиапродукт является необходимым товаром и в то же время способен сам коррегировать количественную и качественную степень необходимости...
38556. СОВЕРШЕНСТВОВАНИЕ КОММУНИКАТИВНОЙ ПОЛИТИКИ ПРЕДПРИЯТИЯ (на примере ООО «Фудсервис ЛТД») 4.85 MB
  Конкурентное окружение компании и использование коммуникаций в конкурентной борьбе. В условиях рыночных экономических отношений торговопосреднические компании играют огромную роль влияя на всю систему распределения товаров от производителей к розничным покупателям. Так как эффективность работы и конкурентоспособность торговопосреднической компании всецело зависит от успешного взаимодействия с различными рыночными субъектами: производителями розничными продавцами и покупателями то особую важность приобретает построение...
38557. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКИХ И АППАРАТУРНЫХ СХЕМ ПРОИЗВОДСТВА И ОТДЕЛЬНЫХ СТАДИЙ ПРОЦЕССА 2.81 MB
  Точки контроля Норма частиц в 1 литре воздуха Из заборной шахты 1000030000 После висциносного фильтра 750025000 Перед головным фильтром 20006000 После головного фильтра 4001200 После индивидуального фильтра Не более 10 Стерильность воздушность систем проверяют ежедневно с помощью чашек Петри или путём прохождения воздуха из продувок коллектора через стерильный фильтрик заполненный углём или пропускают через стерильный мембранный фильтр с последующим пересевом на мясопептонные среды. Готовят 2 среды контрольную и опытную в которой один...
38558. ВПЛИВ ПОСТІЙНОГО МАГНІТНОГО ПОЛЯ НА СТРУКТУРУ ТА ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ПОЛІМЕРНИХ КОМПОЗИТІВ 12.58 MB
  Вплив постійного магнітного поля на структуру і електричні властивості полімерних композитів. Досліджено сплив постійного магнітного поля ПМП на електричні властивості композиту на основі утвореної поліуретанової матриці з наповнювачем феромагнітним оксидом заліза Fe2O3 показано що під впливом постійного магнітного поля композиція набуває упорядкованої структури з анізотропними властивостями а саме зміна діелектричної проникності яка залежать від напрямку ПМП. Влияние постоянного магнитного поля на структуру и электрические свойства...
38559. Модифікація гена kanMX4, що забезпечує резистентність до антибіотика генетицину 1.36 MB
  Це у значній мірі відбувається тому що клітинний цикл та фізіологічні процеси клітин дріжджів дуже подібні до відповідних процесів людських клітин і тому основні клітинні механізми реплікація ДНК рекомбінація поділ клітини і метаболізм мають багато спільних рис. пар основ плазмідної ДНК яку в деяких штамах складають кіллерні плазміди; мітохондріальний геном 75 тис. Отримані гелі можуть бути використані для проведення Саузернблот аналізу що супроводжується гібридизацією або для ізоляції хромосомної ДНК в чистому вигляді. Досить...