39319

Проектирование устройства сбора данных

Курсовая

Информатика, кибернетика и программирование

Разработка блока выработки адресов каналов коммутатора. В радиотехнических системах и в технике связи УСД используются для обработки сигналов функционального контроля каналов связи диагностирования состояния аппаратуры. Имеется F аналоговых каналов. Необходимо опрашивая их согласно заданной последовательности получаемые из каналов аналоговые величины с помощью АЦП преобразовывать в цифровую форму двоичные слова стандартной длины 1 байт = 8 бит и помещать в последовательные ячейки некоторой области ЗУ начиная с ячейки имеющей...

Русский

2013-10-02

485.5 KB

18 чел.

Федеральное агентство связи

Московский Технический Университет Связи и Информатики

Кафедра вычислительной техники и управляющих систем

Курсовой проект

“Проектирование устройства сбора данных”

                                                                      Выполнил: студент Копытин Е.Д.

                     группа МС 0304                

                                                                                                        вариант №14

             Проверила:  Оноприенко З.С.

                                  

Москва 2006

[1] Введение

[2] 1. Задание

[3] 2. Структурная схема и состав УСД

[4] 3. Разработка блока выработки адреса ЗУ

[5]
4. Разработка блока выработки адресов каналов коммутатора

[6]
5. Словесное описание цикла сбора данных

[7]
6. Синтез управляющего устройства

[8]
7. Абстрактный синтез УУ

[9]
8. Этап структурного синтеза УУ

[10] 9. Составление полной схемы УСД

[11] Список литературы

\

Введение

Информационно - измерительные и управляющие цифровые микропроцессорные системы, к которым относится проектируемое устройство сбора данных (УСД), предназначены для измерения, сбора, обработки, хранения и отображения информации с реальных объектов. Такие системы используются практически во всех отраслях народного хозяйства для контроля и управления технологическими процессами, накопления статистических данных. В радиотехнических системах и в технике связи УСД используются для обработки сигналов, функционального контроля каналов связи, диагностирования состояния аппаратуры. Первичная информация в УСД поступает, как правило, по каналам от датчиков в виде аналогового напряжения. В УСД информационные каналы опрашиваются. Поступающие из них мгновенные отсчеты сигналов преобразуются в цифровую форму и помещаются в оперативное запоминающее устройство (ОЗУ) с целью последующей их обработки.

Аппаратура УСД состоит из двух частей - операционного и управляющего устройств (ОУ и УУ). УУ является цифровым автоматом, который вырабатывает в некоторой временной последовательности управляющие сигналы. Существуют два принципиально разных подхода к проектированию микропрограммного автомата: использование принципа схемной логики и программной логики.

1. Задание

Спроектировать устройство сбора данных (УСД). Имеется F аналоговых каналов. Необходимо, опрашивая их согласно заданной последовательности, получаемые из каналов аналоговые величины с помощью АЦП преобразовывать в цифровую форму (двоичные слова стандартной длины 1 байт = 8 бит) и помещать в последовательные ячейки некоторой области ЗУ, начиная с ячейки, имеющей адрес G.

Цифровая процессорная система, фрагментом которой является проектируемое УСД, имеет в своем составе ЗУ емкостью Q бит.

Требуется:

  1.  Исходя из задания разработать ОЗУ цифровой системы.
  2.  Разработать системы формирования адресов ячеек ОЗУ и номеров опрашиваемых каналов.
  3.  Реализовать УСД в виде процессорного устройства, построенного на принципах схемной логики, и привести его функциональную схему.
  4.  Синтезировать схему УУ.
  5.  Составить полную электрическую схему УСД.

Исходные данные на курсовой проект приведены в таблице 1.

Таблица

№ варианта

F10

G16

Θ

а0

а1

а2

а3

14

7

0108

2048 х 8

11

10

00

01

Порядок опроса каналов приведен в таблице 2.

Таблица

Начальная последовательность каналов

0

1

2

3

4

5

6

Порядок опроса каналов

2

0

3

4

6

1

5

2. Структурная схема и состав УСД

Структурная схема УСД приведена на рис. 1. В состав УСД входят:

Мультиплексор (MS): имеет F аналоговых входов и m управляющих (адресных) входов. При подаче на адресный вход двоичного числа - адреса - происходит подключение одного из аналоговых каналов, имеющих данный адрес, к выходу MS. Число опрашиваемых аналоговых каналов связано с числом адресных входов k = 2m.

АЦП: имеет 1 аналоговый вход и 8 выходов, по которым в двоичном, параллельном коде выдается число, соответствующее уровню поданного на вход АЦП отсчета аналогового сигнала. Перед началом работы АЦП на него должен быть подан сигнал запуска.

АЦП выполняет преобразования за несколько тактов. После окончания преобразования АЦП выдает сигнал ОК (окончание преобразования) на устройство управления. Сигнал ОК - флаг (обозначается как Тфл), должен быть зафиксирован с помощью триггера до момента окончания записи данных опрашиваемого канала в ячейку памяти ОЗУ.

MS и АЦП берутся как стандартные схемы с соответствующими характеристиками.

Устройство управления на некоторых тактовых интервалах с учетом осведомительных сигналов, поступающих от других устройств (в дальнейшем такие сигналы обозначаются буквой Xi), формирует управляющие сигналы Yn, которые обеспечивают запуск других устройств и согласованную их работу.

В ходе выполнения курсовой работы разрабатываются: ОЗУ, устройство выработки адреса памяти, устройство выработки адреса каналов, а также УУ.

3. Разработка блока выработки адреса ЗУ

Требуется синтезировать устройство, которое могло бы, начиная с определенного начального адреса G, производить формирование последующих адресов, отличающихся друг от друга на единицу. Разработку такого устройства можно осуществить с помощью счетчиков. Длина адресного слова определяется емкостью памяти.

Емкость памяти θ = 2048 = 211

Начальный адрес ячейки памяти G = 0108 16 =0000 0001 0000 10002

Блок будет содержать четыре четырехразрядных суммирующих двоичных счетчика с пред установкой. Схема блока представлена на рис. 2.

Рис. 2


4. Разработка блока выработки адресов каналов коммутатора

Число каналов F = 710. Блок можно синтезировать с использованием четырехразрядного двоичного счетчика, последовательно формирующего двоичные адресные числа от 1 до 4 с перекодировкой данной последовательности с помощью дешифратора (DC)  и шифратора (CD). После опроса всех каналов срабатывает схема прерывания счета и формируется сигнал сброса счетчика в ноль.

Адрес опрашиваемого канала подается на коммутатор (мультиплексор) параллельным двоичным кодом через ключи. Этот делается для синхронного поступления на мультиплексор всех разрядов адресного слова.

Шифратор – устройство, осуществляющее преобразование десятичных чисел в двоичные. Для обратного преобразования двоичных чисел в небольшие по значению десятичные числа используются дешифраторы.

Схема блока выработки адресов каналов коммутатора показана на рис. 3.

Рис. 3


5. Словесное описание цикла сбора данных

Составим словесное описание работы УСД в виде последовательности выполняемых в нем микроопераций.

  1.  Цикл сбора данных начинается с того, что в счетчик СТ21 блока выработки адресов ячеек памяти производится запись адреса первой ячейки области памяти ОЗУ, отведенной для хранения данных. Очевидно, что в качестве СТ21 удобно использовать такой счетчик, в котором предусмотрена возможность предустановки начального адреса (НА). Ввод начального адреса осуществляется параллельным кодом. Подав на одни входы установки НА логический ноль (потенциал земли или корпуса), а на другие - логическую единицу (напряжение источника питания), можно обеспечить запись требуемого адреса в счетчик в одном такте.
  2.  Счетчик СТ22 блока выработки номера канала сбрасывается в «0». Тем самым в нем формируется адрес аналогового канала, опрашиваемого первым.
  3.  Производится сброс в «0» триггера Тфл (гашение флага). При записи данных первого из опрашиваемого каналов Тфл = 0. Однако перед началом опроса всех последующих каналов, поскольку состояние триггеров флага фиксируется, Тфл = 1. Поэтому эта микрооперация необходима.
  4.  Адрес аналогового канала из СТ22 выдается на адресные входы коммутатора. Коммутатор подключает первый опрашиваемый канал к входу АЦП.
  5.  Производится запуск АЦП, и в нем начинается процесс аналого-цифрового преобразования.
  6.  Проверяется содержимое триггера Тфл. Пока Тфл = 0, устройство пребывает в режиме ожидания окончания преобразования в АЦП. По окончании преобразования АЦП вырабатывает сигнал ОК, устанавливающий Тфл в состоянии 1. Как только Тфл устанавливается в 1, при наличии разрешающего сигнала, осуществляется запись данных с выхода АЦП в требуемую ячейку памяти.
  7.  В СТ21 подготавливается адрес следующей ячейки ОЗУ путем прибавления единицы к содержимому счетчика (к адресу предыдущей ячейки).
  8.  В СТ22 формируется адрес следующего аналогового канала путем прибавления единицы к содержимому счетчика.
  9.  Проверяется содержимое счетчика СТ22. Если (СТ2) = 0, то операции 3-8 повторяются. В противном случае происходит завершение цикла сбора данных (выход из цикла), так все каналы оказываются опрошенными.

На основании словесного описания составим в соответствующем порядке список микроопераций, необходимых для управления ОУ:

y1 – установка в 0 СТ22 (сброс), (СТ2 2 ← 0);

y2 – разрешение записи начального адреса G в СТ21;

уЗ – сброс Тфл (Тфл ← 0);

у4 – разрешение передачи адреса аналогового канала на коммутатор [комм.←(СТ22)];

у5 – запуск АЦП (зап. АЦП);

yб – разрешение записи данных из АЦП в ОП [ОП ← (АЦП) ];

у7 – увеличение на 1 (CT21) приращение счетчика [инкремент СТ21 ← (СТ21) + 1];

у8 – увеличение на 1 (СТ22) - приращение счетчика [СТ22 ← (СТ22) + 1].

В процессе выполнения цикла сбора данных в ОЗУ УСД вырабатываются осведомительные сигналы: сигнал X1 = 1 — сигнал ОК и сигнал Х2 = 1 - завершение цикла сбора данных (опроса всех каналов). Если количества каналов меньше 16, а используется 16-разрядный счетчик, то необходимо составить схему, вырабатывающую сигнал логической единицы для обнуления счетчика после опроса всех каналов.


6. Синтез управляющего устройства

УСД состоит из двух основных узлов: операционного узла (ОУ) и узла управления (УУ). ОУ - это устройство, в котором непосредственно выполняются операции, реализуемые процессором. В нашем примере на входы ОУ поступают данные с выхода АЦП, представленные в виде параллельного двоичного кода, а преобразования, осуществляемые в ОУ, состоят в приеме этих данных из того или иного аналогового канала и пересылки их в требуемые ячейки оперативной памяти.

УУ в определенной последовательности формируют управляющие сигналы yl, у2..... и с их помощью координирует работу элементов схемы ОУ, обеспечивая в нем требуемую обработку информации. Под действием каждого из этих сигналов в элементах ОУ производятся некоторые элементарные действии, называемые микрооперациями. К числу таких действий, например, относятся разрешение записи данных в память, приведение в исходное состояние счетчика и т. п.

В каждый тактовый период синхроимпульсов в ОУ может выполняться одна или несколько независимых друг от друга микроопераций в различных элементах схемы. Набор микроопераций, выполняемых в ОУ одновременно (в одном такте), называется микрокомандой (МК), т.е. для управления всеми микрооперациями достаточно выдачи из УУ одного сигнала, который далее разветвляется по всем соответствующим направлениям. При необходимости управления микрооперацией сигналом «0», а МК = 1, в цепь передачи устанавливается инвертор.

УУ работает под действием команд - двоичных кодов, подаваемых на входы Z1, Z2... На входы XI, Х2... УУ поступают осведомительные сигналы, иначе называемые условиями или признаками, которые формируются ОУ и влияют на последующие значения управляющих сигналов Y, определяя тем самым последующие этапы преобразования операндов в зависимости от результатов, полученных в ОУ при выполнении предыдущей микрокоманды.


7. Абстрактный синтез УУ

На основе изложенного выше описания цикла сбора данных составляем блок-схему алгоритма функционирования:

Рис. 4


Анализ алгоритма показывает, что микрооперации
y1, y2, а также y3, y4, y5 и y6, y7, y8 не зависят друг от друга и могут выполняться одновременно в одном такте. Следовательно, эти микрооперации в группах можно объединить в микрокоманды. Затем следует произвести разметку получившейся блок-схемы. Начало и конец блок-схемы обозначим a0, что соответствует исходному состоянию управляющего автомата. Вход каждого блока, следующего за операторными блоками, которые имеют прямоугольную форму, помечаем символами a1, a2, a3, соответствующими последующим состояниям УУ.

Рис.5

Далее на основе произведенной разметки блок- схемы алгоритма строится граф функционирования УСД. Каждому из состояний управляющего автомата соответствует узел графа, дугами графа изображаются переходы автомата из одного состояния в другое, причем возле каждой дуги указывается условие перехода X и выполняемая на данном тактовом интервале микрокоманда Y.

Рис.6


8. Этап структурного синтеза УУ

Управляющее устройство состоит из комбинационного цифрового устройства (КЦУ) и из запоминающего устройства (ЗУ), которое в свою очередь состоит из двух JK триггеров:

Рис.7

Эта схема содержит КЦУ и ЗУ, состоящее из двух JK – триггеров. Как известно, для обеспечения перехода JK из состояния a(t) в новое состояние a(t+1), на входе J и K нужно подавать определенные сигналы возбуждения. Набор таких сигналов показан в таблице 3.

Таблица

Вид перехода

Входные сигналы

Q(t)

Q(t+1)

J(t)

K(t)

0

0

0

-

0

1

1

-

1

0

-

1

1

1

-

0

Сигналы XI, Х2, Q1, и Q2 выступают в роли аргументов, а сигналы J1, K1, J2, К2, а также Y1, Y2, Y3 являются логическими функциями, которые должен реализовывать КЦУ

Таблица

Условия перехода

Предыдущее состояние

Следующее состояние

Сигналы возбуждения триггеров

Выполняемая микрокоманда

Х1

Х2

а t

Q2

Q1

а t+1

Q2

Q1

J2

K2

J1

K1

Y1

Y2

Y3

-

-

a0

1

1

a1

1

0

-

0

-

1

1

0

0

-

-

a1

1

0

a2

0

0

-

1

0

-

0

1

0

0

-

a2

0

0

a2

0

0

0

-

0

-

0

0

0

1

-

a2

0

0

a3

0

1

0

-

1

-

0

0

1

-

0

a3

0

1

a1

1

0

1

-

-

1

0

0

0

-

1

a3

0

1

a0

1

1

1

-

-

0

0

0

0

Далее при помощи карт Карно находим нормальные минимальные дизъюнктивные формы для функций:

На основании полученных с помощью карт Карно выражений построим обобщенную схему КЦУ в базисах И-ИЛИ (рис. 8).

9. Составление полной схемы УСД

Список литературы

  1.  Колотушкин Р.И. Методические указания для курсового проектирования «Устройство сбора данных». М., Инсвязьиздат, 2001.
  2.  Калабеков Б.А. Цифровые устройства и микропроцессорные системы. М., Радио и связь, 2000.
  3.  Лекции.

Рис.1

0

1

7

адресные входы

0     1               k

0     1               m

Запись в память

конец преобразования

запуск

Устройство выработки адреса ячейки памяти

ПАМЯТЬ

Генератор тактов

Устройство управления

(УУ)

АЦП

Блок выработки адреса каналов

MХ

Y1        CT21←0

Начало

Y2        CT22←G

Y3        Tфл0

Y5        Зап. АЦП

Y4        Кл1

Y7  CT21=CT21+1

Y8  CT22=CT22+1

Y6        ОП АЦП

(Tфл)=1

(Tфл)=1

Конец

Да(1)

Да(1)

Y1           y1, y2

Y2          y3, y4, y5

Y3         y6, y7, y8

X1

X2

а0

а1

а2

1

а3

а0

1

a0

a3

a2

a1

Х2 = 0

Y1

Х2 = 1

Y3

Х1 = 1

Y2

Х1 = 0

Q1Q2

J2 = Q1·Q2  

X1X2

00      01     11     10

00

01

11

10

0

-

-

1

0

-

-

1

0

-

-

1

0

-

-

1

Q1Q2

X1X2

-

1

0

-

-

1

0

-

-

1

0

-

-

1

0

-

0      01     11     10

00

01

11

10

K2 = Q1·Q2

J1 = Q1·Q2·X1

X1X2

Q1Q2

00

01

11

10

00      01     11     10

0

0

-

-

0

0

-

-

1

0

-

-

1

0

-

-

K1 = Q1·Q2 U Q1· Q2· X2

X1X2

-

-

1

1

-

-

1

0

-

-

1

0

-

-

1

1

00      01     11     10

00

01

11

10

Q1Q2

Y1 = Q1·Q2

X1X2

Q1Q2

00

01

11

10

00      01     11     10

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

00      01     11     10

00

01

11

10

Q1Q2

X1X2

Y2 = Q1·Q2

X1X2

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

00      01     11     10

00

01

11

10

Q1Q2

Y3 = Q1·Q2·X1


 

А также другие работы, которые могут Вас заинтересовать

52733. Створення виховної системи навчального закладу 784.5 KB
  Коменський На першому етапі створення та впровадження виховної системи була проведена робота щодо вивчення стану виховної роботи у школі зроблено аналіз досягнень та недоліків творчою групою опрацьовано літературу з питань педагогіки та психології виховного процесу на педрадах та засіданнях методобєднань класних керівників обґрунтовано актуальність та необхідність системного підходу до питань виховання та навчання учнів. Досить неординарним є контингент учнів нашої школи додаток 2: майже 50 учнів належать до соціально незахищених...
52734. Робота з обдарованими дітьми в умовах сільської малокомплектної школи 171.5 KB
  Науково обґрунтований підхід до процесу побудови педагогічної технології виховання інтересу в учнів до занять фізичною культурою та спортом дає змогу вчителям фізичної культури тренерам класним керівникам шкільним психологам батькам всебічно зрозуміти суть і причини явищ і процесів у розвитку масового охоплення школярів оздоровчою і фізкультурноспортивною діяльністю через самостійні заняття відвідування спортивних секцій груп ЗФП участі в спортивних змаганнях. У період навчання у школі в учнів розкриваються творчі здібності та...
52735. ІНТЕГРОВАНІ ЗАНЯТТЯ У КОНТЕКСТІ ПРОЕКТНОЇ ТЕХНОЛОГІЇ 1.22 MB
  Існують три рівні інтеграції змісту навчального матеріалу: Отже одним із шляхів підвищення якості освіти є впровадження у практику викладання бінарних та інтегрованих занять особливо з дисципліни Іноземна мова за професійним спрямування які є складовою нормативної частини типових навчальних планів підготовки молодших спеціалістів у вищих навчальних закладах І ІІ рівнів акредитації усіх спеціальностей і можлива інтеграція англійської мови із дисциплінами професійноорієнтованого спрямування. Але такий шлях використання міждисциплінарних...
52736. Формування соціальної активності підлітків через використання виховного педагогічного потенціалу спадщини В.Сухомлинського 103.5 KB
  Сухомлинський А яким бути саме мені Ким бути Як жити Як бути корисним людям Які якості треба виховувати в собі сьогодні щоб комфортно почуватися в житті завтра Якою має бути особистість XXI сторіччя Ці питання соціалізації й самореалізації особистості є найактуальнішими питаннями сьогодення. Соціальну активність особистості ще можна визначити як якість її звязків із суспільством. Від соціальної активності особистості залежить як правило і її соціальна мобільність. Під його керівництвом у Павлиській школі було...
52737. Створення ситуації успіху в навчальній діяльності школярів 378.5 KB
  Створення ситуації успіху в навчальній діяльності школярів це проблема до якої все частіше звертається сучасна педагогічна наука. Провівши огляд та аналіз літератури з теми Створення ситуації успіху на уроках стверджую що обрана тема є актуальною для освіти залишається лише допомогти дитині в період формування її особистості ні в якому разі не позбавляти школяра чекання завтрашньої радості віри у свої можливості...
52738. Формування творчої особистості молодшого школяра через використання інтерактивних технологій на уроках читання у початкових класах 69.5 KB
  В теорії і практиці навчання особливо гостро стоїть питання про розвиток творчих здібностей учнів. Під час такого діалогу важливо навчити кожну дитину розмірковувати гнучко підходити до розвязання проблем знаходити нові оригінальні рішення для того щоб відчути задоволення від навчання. Зацікавленість є ефективним засобом успішного навчання необхідною умовою досягнення позитивних наслідків. Ефективне навчання неможливе без активізації пізнавальної діяльності розвитку творчих здібностей.