39389

Исследование колебательного движения материальной точки

Контрольная

Математика и математический анализ

Дано: Найти: уравнение движения груза D. Решение 1 Находим приведенную жесткость пружин: Для определения fсm составим уравнение соответствующее состоянию покоя груза D на наклонной плоскости Дифференциальное уравнение движения груза примет вид Постоянные С1 и С2 определяем из начального условия: при t=0; x0=fcm; Уравнение движения груза имеет следующий вид: Найдем числовые значения входящих в уравнение величин Следовательно уравнение движения груза D: Ответ:.

Русский

2013-10-03

61 KB

16 чел.

Д-3

Исследование колебательного движения материальной точки

Две параллельные пружины 1 и 2, имеющие коэффициенты жесткости с1=4 Н/см и с2=6 Н/см, соединены абсолютно жестким брусом AB, к точке K которого прикреплена пружина 3 с коэффициентом жесткости с3=15 Н/см. Точка K находится на расстояниях a и b от осей пружин 1 и 2: a/b=c2/c1. Пружины 1, 2 и 3 не деформированы. Груз D массой 2,5 кг. Присоединяется к концу N пружины 3; в тот же момент грузу D сообщают скорость , направленную вниз параллельно наклонной плоскости (). Массой бруска AB пренебречь.  

Дано:

Найти: уравнение движения груза D.

Решение

1) Находим приведенную жесткость пружин:

 

; ;

Для определения fсm составим уравнение, соответствующее состоянию покоя груза D на наклонной плоскости:

; ;

Дифференциальное уравнение движения груза примет вид:

; ;

Постоянные С1 и С2 определяем из начального условия:

при t=0; x0=-fcm; 

Уравнение движения груза имеет следующий вид:

Найдем числовые значения входящих в уравнение величин

Следовательно, уравнение движения груза D:

Ответ:


 

А также другие работы, которые могут Вас заинтересовать

10597. Тепловая задача. Основные положения. Критерии и числа подобия 67.46 KB
  Тепловая задача. Основные положения. Критерии и числа подобия В настоящее время существует немало как аналитических так и численных методов решения тепловых задач для тел цилиндрической и прямоугольной формы. В случае нагрева тел более сложной формы для решения п...
10598. Методы решения краевых задач. Метод разделения переменных (Метод Фурье) 119.66 KB
  Методы решения краевых задач. Метод разделения переменных Метод Фурье. Метод разделения переменных относится к классическим методам решения линейного дифференциального уравнения теплопроводности. При его применении вначале находится совокупность частных решений...
10599. Методы интегрального преобразования 76.24 KB
  Методы интегрального преобразования. Операционные методы. Для многих задач теплопроводности использование классических методов оказывается неэффективным например применение метода разделения переменных для задач с внутренними источниками тепла. Основные пра
10600. Нагрев неограниченной пластины. Решение методом преобразования Фурье 73.38 KB
  Нагрев неограниченной пластины. Решение методом преобразования Фурье Дана неограниченная пластина толщиной 2R при температуре. Теплообмен с окружающей средой происходит при ГУ2. Нагрев осуществляется переменным источником ...
10601. Нагрев неограниченного цилиндра 67.29 KB
  Нагрев неограниченного цилиндра Решение задачи нагрева цилиндра произведем с помощью преобразования Ханкеля 81 Краевые условия Tr0=fr...
10602. Нагрев цилиндра конечных размеров 86.09 KB
  Нагрев цилиндра конечных размеров. Если имеется симметрия относительно оси z то оператор тождественно равен нулю тогда получим Рассмотрим решение уравнения для конечного цили...
10603. Численные методы решения тепловой задачи. Метод конечных разностей 218 KB
  Численные методы решения тепловой задачи. Метод конечных разностей Многие математические модели описываются дифференциальным уравнением или системой дифференциальных уравнений с краевыми условиями первого второго и третьего рода. Точное решение краевых задач уд...
10604. Метод граничных элементов 353 KB
  Метод граничных элементов Приводятся фундаментальные решения для ортотропных и анизотропных областей и показывается что все положения обсуждавшиеся в предыдущих разделах справедливы также и для бесконечных областей при выполнении определенных условий регулярно...
10605. Метод конечных элементов. Прямое построение глобальной матрицы жесткости 124.5 KB
  Метод конечных элементов Прямое построение глобальной матрицы жесткости Метод построения глобальной матрицы жесткости весьма неэффективен при использовании цифровой вычислительной машины. Эта неэффективность объясняется тем что матрица жесткости отдельного эл...