39593

Привод ленточного транспортёра с червячным редуктором

Курсовая

Производство и промышленные технологии

Подготовка исходных данных для расчета редуктора на ЭВМ и выбор электродвигателя Расчет червячного редуктора Предварительный расчет валов Уточнённый расчёт валов. Выбор смазки редуктора Проверка прочности шпоночного соединения Расчёт штифтового соединения. Подготовка исходных данных для расчета редуктора на ЭВМ...

Русский

2015-01-15

591 KB

5 чел.

Московский ордена Ленина, ордена Октябрьской Революции

и ордена Трудового Красного Знамени

государственный технический университет им. Н.Э. Баумана

Кафедра «Детали машин»

Привод ленточного транспортёра

Пояснительная записка

ДМ16-08.00.00 ПЗ

Студент _____________ (Дмитриев Ал.А.)    Группа Э2-61

Руководитель проекта  ______________ (Гудков.)

  

 2006 г.

                                         

Содержание

                       Введение

                 1   Подготовка исходных данных для расчета

      редуктора на ЭВМ и выбор электродвигателя              

            2   Расчет червячного редуктора

            3   Предварительный расчет валов  

            4    Уточнённый расчёт валов.

 

       5    Расчёт подшипников на долговечность.             

   6   Выбор смазки редуктора

                7   Проверка прочности шпоночного соединения

                8   Расчёт штифтового соединения.     

            9   Расчет сварного соединения.

  1.  Расчет крышек подшипников.

  1.  Расчет муфты

  1.  Список  используемой литературы

1. Подготовка исходных данных для расчета

редуктора на ЭВМ и выбор электродвигателя

Номинальный вращающий момент на приводном валу транспортера :

 ;

  Номинальный вращающий момент на тихоходном валу редуктора при наличии упругой муфты :

 ;

   Частота вращения приводного вала :

           

   Частота вращения тихоходного вала редуктора :

           

   Номинальная мощность на тихоходном валу редуктора :

            кВт;

Потребляемая мощность асинхронного электродвигателя:

          

Принимаем 

где   - общий КПД привода;

  - ориентировочное значение КПД редуктора;

  - КПД муфты;

  - КПД пары подшипников приводного вала;

 Максимальное передаточное число червячного редуктора:

 Максимально возможная частота вращения вала электродвигателя при наличии упругой муфты :

 

Таким образом, окончательно выбираем следующий электродвигатель :

 

  

 Передаточное число редуктора :

Вращающий момент на валу электродвигателя

 

Вращающий момент на тихоходном валу редуктора

 

2.Расчет червячного редуктора

Расчет редуктора был проведен с помощью ЭВМ. При проектировании червячного редуктора необходимо решить вопрос о распределении известного общего передаточного числа uред  между быстроходной uБ и тихоходной uт  ступенями редуктора (uред=uБ*uт).Поэтому в программе предусматривается проведение расчетов при различных отношения uБ/uт. В программе также варьируется термообработка колес, которая очень существенно влияет на массу редуктора и его стоимость.

По рассчитанным данным ищется оптимальный вариант конструкции, учитывающий минимальную массу редуктора, минимальную стоимость и габариты.

Исходя из выше указанных требований, мной был выбран следующий вариант : №3(см. приложение 1)

В приложении 1 приведены данные для расчета и полученны результаты.

 

3 Предварительный расчет валов

Крутящий момент в поперечных сечениях  валов

Быстроходного     Tб= 18,2 Hм

Тихоходного         Tт= 710,1 Hм

Предварительные значения диаметров (мм) различных участков стальных валов редуктора определяют по формулам:

             Для быстроходного:   

Из-за конструкции концевого участка вала                                                        

d=1.5dдв=1,5*28=42 

Принимаем d=42(по табл.24,27)

Принимаем dП=55(по табл.24.1)

Принимаем dБП=63(по табл.24,1)

             Для тихоходного:        

Принимаем d=56(по табл.24,27)

 

Принимаем dП=65(по табл.24,1)

Принимаем dБП=75(по табл.24,1)      

  

  1.  Уточнённый расчёт валов.

4.1 Расчёт быстроходного вала.

Ft=501,8 Н; Fr=1577,8 Н; Fa=4334,9 Н; Т=18,2 Н·м

Находим реакции опор А и Б

Нормальные и касательные напряжения при действии максимальных нагрузок:

;                 ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 );

-крутящий момент.

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.

4.2 Тихоходный вал (расчёт на статическую прочность).

Ft=4334,9 Н; Fr=1577,8Н; Fa= 501,8Н; Т=710,1 Н·м

Fк=Сp·Δ=1605.87 Н

Находим реакции опор А и Б:

Реакции опор от действия консольной нагрузки

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

- суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.

Расчёт на сопротивление усталости:

Вычислим коэффициент запаса прочности S для опасного сечения О.О.

, [S]=1.5-2.5-допустимое значение коэф.  Запаса прочности.

;  

;  

-коэффициенты снижения

     предела выносливости;

-эффективные коэффициенты концентрации напряжений;

-коэффициенты влияния абсолютных размеров поперечного сечения;

-коэффициенты влияния качества поверхности;

-коэффициент влияния поверхностного упрочнения;

;      

4.3 Приводной вал (расчёт на статическую прочность).

Fr=0; Ft=2,5Ft =10625Н; Fa=0; Fк=1605.87; Т=710.1 Н ·м

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

;                       ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.

5 Расчёт подшипников на долговечность.

Быстроходный вал: Подшипники роликовые конические однорядные лёгкой серии

7711А: d=55мм, D=100мм, В=21мм, Сor=61 кН, Сr=84,2 кН,e=0.4

Дальше производим расчет по наиболее нагруженного подшипника опоры B.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Тихоходный вал: Подшипники роликовые конические однорядные лёгкой серии

7213А: d=65мм, D=120мм, В=23мм, Сor=78,0 кН, Сr=108,0 кН.

V=1.0 – при вращении внутреннего кольца подшипника

Дальше производим расчет по наиболее нагруженного подшипника опоры B.

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Приводной вал: Подшипники радиальные сферические двухрядные

1213: d=65мм, D=120мм, В=23мм, Сor=17,3 кН, Сr=31 кН.

V=1.0 – при вращении внутреннего кольца подшипника

       

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

6 Выбор смазки редуктора

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

В настоящее время в машиностроении для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач

заливают масло так, чтобы венцы колес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывается с зубьев центробежной силой и зацепление работает при недостаточной смазке. Кроме того, заметно увеличиваются потери мощности на перемешивание масла и повышается его температура.

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям находят требуемую кинематическую вязкость и марку масла.

По табл. 11.1 и 11.2 (П.Ф.Дунаев, О.П.Лелиликов) выбираем масло

И-Г-А-22 ТУ38-1001451-78.

Глубину погружения в масло деталей червячного редуктора при верхнем расположение червяка

Hmax=0,25d2 =81.9мм, Hmin=2m=12.6мм.

7 Проверка прочности шпоночного соединения

Все шпонки редуктора призматические, размеры длины, ширины, высоты, соответствуют ГОСТ 23360-80. Материал шпонок – сталь 45 нормализованная. Все шпонки проверяются на смятие из условия прочности по формуле:

Допускаемое напряжение смятия [см]=200МПа

Быстроходный вал: 18.2 Н·м;

Вал электродвигателя =Ø28мм;  b·h·l =8·7·42;

Тихоходный вал: 710,1 Н·м;

Диаметр вала: Ø75мм;  b·h·l =20·12·80;

Выходной конец вала: Ø56мм;  b·h·l =14·9·50;

8 Расчёт штифтового соединения.

Принимаем

Т.к количество штифтов не может быть меньше 3, то принимаем n=3

9 Расчет сварного соединения.

Расчет будем производить как проверочный:

Принимаем k=5 (как наиболее часто используемый)

  1.  Сварное соединение на верхней части барабана.

D=400мм; Ft=4.25кH

  

где -ширина шва.

Т.к то прочность сварного шва обеспечивает надежное крепление

2 Сварное соединение приводного вала с барабаном.

D=65мм T=850 Hм

 

где -ширина шва.

Т.к то прочность сварного шва обеспечивает надежное крепление

10 Расчет крышек подшипников.

Крышка для подшипника 7711А:

Принимаем: δ=7, d=10,z=6

δ1=1.2 δ=8.4

Dф=D+4.1d=100+4.1*10=141

δ2=0.95δ=6.65

Крышка для подшипника 7713А:

Принимаем: δ=7, d=10,z=6

δ1=1.2 δ=8.4

Dф=D+4.1d=120+4.1*10=161

δ2=10.95δ=6.65

11 Расчет муфты

Из технического задания необходимо поставить компенсирующую  муфту на выходной вал. В качестве такой муфты я выбрал муфту со стальными стержнями.  

В данной муфте упругими элементами являются аксиально расположенные цилиндрические стержни. Монтаж и демонтаж муфты можно выполнять без осевого смещения соединяемых узлов.

-принимаем

-принимаем

-принимаем d=7

Т.к сверление отверстий по стержни производиться минимум через 15 градусов то зададимся количеством стержней z=12

-принимаем d=6.

Т.к частота вращения муфты очень мала, то наша муфта будет иметь постоянную жесткость.

12 Список  используемой литературы

  1.  М.Н. Иванов. Детали машин. М.: «Машиностроение», 1991.
  2.  П.Ф. Дунаев, О.П.Леликов – Конструирование узлов и деталей машин.
    М.: «Высшая школа», 1985.
  3.  Д.Н. Решетов – Детали машин. Атлас конструкций в двух частях. М.: «Машиностроение», 1992.


 

А также другие работы, которые могут Вас заинтересовать

3495. Бюджетування зовнішньоекономічної діяльності підприємств 1.58 MB
  Функціонування та розвиток сучасних суб’єктів господарської діяльності здійснюється в умовах глобалізації національних економік, активізації міжнародних економічних відносин, лібералізації зовнішньої торгівлі тощо. Це зумовлює загострення...
3496. Теоретичні основи безпеки життєдіяльності. Небезпека. Ризик як оцінка небезпеки 623.5 KB
  Вивчення курсу з безпеки життєдіяльності має на меті підготовку особи до активної участі в забезпеченні тривалого повноцінного життя в суспільстві, що динамічно змінюється. Молодший спеціаліст повинен бути здатним забезпечити необхідний рівень...
3497. Конспект лекцій. Безпека життєдіяльності 1.01 MB
  В Концепції освіти з напрямку «Безпека життєдіяльності» основною метою є підготовка особи до активної участі в забезпеченні тривалого повноцінного життя в суспільстві, що динамічно змінюється. Основними завданнями освіти з БЖД є: формування ку...
3498. Відповідальність за правопорушення на ринку цінних паперів 165.5 KB
  Відповідальність за правопорушення на ринку цінних паперів. Основою юридичного забезпечення державної влади на ринку цінних паперів є наявність і чітке функціонування механізму примусового виконання державної волі. Такий механізм повинен складатися ...
3499. Инженерная графика как учебная дисциплина 596 KB
  В число дисциплин, составляющих основу инженерного образования, входит "Инженерная графика". Инженерная графика - это условное название учебной дисциплины, включающей в себя основы начертательной геометрии и основы специального вида технического чер...
3500. Джерела з історії давнього сходу 113.5 KB
  Джерела з історії давнього сходу Проблеми джерелознавства історії Давнього Сходу. Законодавчі, діловодні, актові джерела. Царські надписи, історичні хроніки, аннали. Релігійні тексти. Публіцистична, наукова, художня література. Проблеми джерел...
3501. Введение в программирование 18.96 KB
  Введение в программирование В широком смысле под программированием понимают все технические операции, необходимые для создания программы, включая анализ требований и все стадии ее разработки и реализации. В более узком смысле программирование...
3502. Языки программирования 22.84 KB
  Языки программирования Язык программирования – формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, ЭВМ, т.е. компьютера). Язык программирования определяет набор лексических, си...
3503. Компиляция в программировании 27.83 KB
  Компиляция Программа, представленная в виде команд языка программирования, называется исходной программой. Она состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Чтобы процессор смог выполнить работу в соответствии с инс...