39688

Современные перспективные направления повышения точности

Лекция

Производство и промышленные технологии

Все сказанное определяет виртуальный образ технологической системы. Следовательно технологическая система станка должна быть оснащена соответствующими вычислительными средствами возмещающими деятельность человека и соответствующую часть технологической системы. Вычислительная система станка кроме традиционных задач управления процессом обработки должна выполнять следующие задачи: оценку точностных возможностей технологической системы на основе информации полученной подсистемами диагностики состояния станка и инструмента; оценку...

Русский

2013-10-08

61 KB

8 чел.

Современные перспективные направления повышения точности

7.1. Понятие об интеллектуальной технологии [8]

В основу концепции интеллектуальной технологии положена идея получения виртуального образа заготовки, включающего в себя геометрический образ и другие показатели, определяемые ее назначением. Кроме того, необходима аттестация рабочего пространства станка, оснастки в динамике с учетом температурного и деформированного их состояния, характера действия силовых факторов, характера износа инструмента и пр.

Все сказанное определяет виртуальный образ технологической системы.

Реализация интеллектуальной технологии потребует встраивания в технологическое оборудование системы цифровой индикации линейных и угловых перемещений.

Измерительные системы цифровой индикации в технологическом оборудовании должны функционировать непосредственно в рабочей зоне станка, по возможности не ограничивать рабочее пространство станка, иметь надежную защиту от попадания стружки и охлаждающей жидкости, возможность ручной и автоматической настройки на размер во всем диапазоне и др. Наиболее перспективным направлением для решения подобной задачи является использование бесконтактных методов и устройств, основанных на оптикоэлектронном принципе и обладающих высокой чувствительностью и малыми габаритными размерами, практическим отсутствием измерительного усилия.

Процесс измерений и соответствующих расчетов должен ограничиваться операционным временем технологического или производственного процесса Обработку большого объема измерительной информации в реальном масштабе времени (105-107 бит/с) невозможно осуществить без применения средств вычислительной техники. Следовательно, технологическая система станка должна быть оснащена соответствующими вычислительными средствами, возмещающими деятельность человека и соответствующую часть технологической системы. Вычислительная система станка, кроме традиционных задач управления процессом обработки, должна выполнять следующие задачи:

• оценку точностных возможностей технологической системы на основе информации, полученной подсистемами диагностики состояния станка и инструмента;

• оценку пригодности режущего инструмента и подачу команды на его замену;

• определение числа рабочих ходов и режимов обработки каждой поверхности детали с учетом данных о состоянии станка, инструмента и заготовки;

• выработку команд для настройки дополнительных устройств;

• управление процессом обеспечения точности детали;

• накопление статистики о точности изготовленной партии деталей и пополнение базы знании и др.

Для практической реализации концепции интеллектуальной технологии потребуется:

• выявление информационных связей в технологической системе и изыскание возможности их технической и программной реализации,

• создание технологических моделей для реализации технологического процесса, обладающего конструктивной гибкостью;

• создание автоматических систем обнаружения дефектов заготовок и полуфабрикатов при сохранении операционного времени технологического или производственного процесса;

• изыскание в области разработки средств измерительных систем для получения необходимой технологической информации;

• создание гибких мехатронных систем машин и их узлов, способных под конкретный образ детали оптимально менять режимы и конструктивные параметры, т.е. обладающих конструкторско-технологической гибкостью,

• накопление и создание баз данных и баз знаний с разработкой на их основе эксплуатационных систем для использования принципов интеллектуальной технологии;

• разработка методологии представления многомерных объектов и языка их описания в память ЭВМ;

• создание программных средств на базе перспективных средств вычислительной техники, являющихся составной частью технологической системы;

• исключение используемой в настоящее время технической документации в виде технологических и контрольных карт за счет дополнения системы ЧГТУ моделью обрабатываемой детали с учетом геометрического образа и ее физико-механических свойств. Указанное выше означает, что речь идет о принципиально новом подходе к технологической системе, работающей с усредненным образом заготовки и учитывающей все отклонения от идеального образа. Такая система должна обладать достаточной конструктивно-технологической гибкостью, позволяющей по полученному виртуальному образу технологической системы реализовать стратегию оптимального технологического процесса, т.е. наиболее полную адаптацию к сложившейся ситуации при решении конкретных технологических задач

7.2. Понятие о мехатронных системах [5]

Мехатроника - новое направление в науке и технике, необходимое для практической реализации концепции интеллектуальной технологии. Развитию мехатроники способствовало становление и развитие информатики, а также бурный процесс микрокомпьютеризации техники.

Внедрение в производство мехатронных структур способствует высокой концентрации электронных схем, агрегатов, механизмов оборудования и машинных структур; автоматизации производственных процессов с высокой надежностью оборудования; упрощению перестройки технологических систем на выпуск новой продукции путем создания функциональной избыточности и гибкости мехатронных структур; получению высокой прибыли и рентабельности производства вследствие повышения производительности и интенсификации технологических процессов.

Применительно к прецизионному станкостроению основные принципы построения мехатронных устройств таковы:

1. Принцип «директ драйв» - прямой привод. Сущность этого принципа заключается в том, что обрабатываемая деталь и режущий инструмент закрепляются непосредственно на электроприводы без промежуточных зубчатых передач и трансмиссий. Таким образом, устраняются погрешности из-за зазоров и износа деталей трансмиссии.

2. Управление электроприводами осуществляется путем варьирования частотой и мощностью питающего напряжения. При этом каждый привод имеет персональное питание. Точным дозированием электрической энергии удается достичь высокой точности по сравнению с механическим приводом аналогичного назначения.

3. При обработке детали на мехатронном станке положение обрабатываемой детали и режущего инструмента постоянно контролируется с помощью датчиков положения высокой точности.

4. Мехатронный станок управляется компьютером, который является управляющим центром всей мехатронной системы.

Структурную схему в упрощенном варианте можно условно изобразить в виде блоков, представленных на рис. 7.1. Основной особенностью мехатронного станка является то, что в нем используются электрические процессы вместо механических, т.е. дозирование усилий и мощности производится компьютером при подаче питания на электроприводы. Обратная связь при этом осуществляется сигналами с датчиков положения режущего инструмента и обрабатываемой детали. Все механизмы подачи имеют прямой привод с линейным перемещением

В настоящее время металлообрабатывающие станки достигли своей предельной точности обработки - 10 мкм, в то время как точность датчиков положения инструмента достигает долей микрометра Мехатронные системы по своим техническим возможностям позволяют достичь точности обработки. Близкой к точности датчиков положения режущего инструмента и обрабатываемой детали.

Сравнение мехатронных и прецизионных станков показывает, что мехатронные станки превосходят своих предшественников по всем основным параметрам.

Рис. 7.1. Структурная схема мехатронного станка

Производственное оборудование должно поставляться на основе принципа комплексных поставок, предполагающего переход от создания отдельных станков к сложным технологическим системам, проектирование, производство, ввод в эксплуатацию и доводку которых осуществляет производитель оборудования по единому функционально взаимосвязанному проекту. Этот принцип может быть использован для создания технологических систем на основе мехатронных структур.

Анализ показывает, что внедрение мехатронных устройств позволит обеспечить повышение производительности труда в 9-10 раз; сокращение в 1,5 раза затрат на проектирование и изготовление новых технологических линий; сокращение в 1,5-2,0 раза сроков и затрат на освоение выпуска новой продукции;

уменьшение сроков создания сложных технологических систем с 7-10 до 2-3 лет; повышение уровня комплексной механизации и автоматизации труда на 95 %; увеличение в 1.5-2.0 раза ресурса работы технологического оборудования;

увеличение коэффициента технической готовности оборудования до 0.95:

уменьшение трудоемкости технического обслуживания производства в 1.5-2.0 раза.


 

А также другие работы, которые могут Вас заинтересовать

42839. Сестринский процесс при раке лёгкого 414.79 KB
  Два случая иллюстрирующие тактику медицинской сестры при осуществлении сестринского процесса у пациентов с данной патологией; основные результаты обследования и лечения описываемых больных в стационаре Методы исследования: Для исследования использовались следующие методы: научнотеоретический анализ медицинской литературы по данной теме; эмпирический наблюдение дополнительные методы исследования: организационный сравнительный комплексный метод; субъективный метод клинического обследования пациента сбор...
42840. Учет затрат и управления экономическими результатами деятельности предприятия 55.04 KB
  Для максимизации прибыли менеджмент компаний нуждается в наличии эффективного механизма диагностики финансового положения и финансовой устойчивости, необходимого при оценке деятельности на текущий момент времени в исторической ретроспективе, а также в ее прогнозировании на будущее, такую информацию получают на основании финансового и управленческого анализа.
42842. Методики итерационного решения задачи Коши методом Рунге-Кутта 4 порядка 243.76 KB
  Инженеру очень часто приходится сталкиваться с ними при разработке новых изделий или технологических процессов так как большая часть законов физики формулируется именно в виде дифференциальных уравнений. Любая задача проектирования связанная с расчетом потоков энергии или движением тел в конечном счете сводится к решению дифференциальных уравнений. Поэтому численные методы решения дифференциальных уравнений играют такую важную роль в практике инженерных расчетов и в моделировании. Поэтому для построения компактных работающих в реальном...
42843. Расчет усилителя звуковой частоты на основе интегральной микросхемы TDA 2050 390.69 KB
  При выборе интегральной микросхемы основного усилительного каскада пришлось немного отойти от технического задания в виду возможности обеспечения данной микросхемой верхней граничной частоты 20кГц и нижней граничной частоты 20 Гц, что в свою очередь только улучшит качество воспроизводимого звука.
42844. Усилитель звуковой частоты мощности тембров и громности 419.17 KB
  Схема усилителя Перечень элементов Заключение Список литературы Техническое задание Выходная мощность Pвых 35 Вт Сопротивление нагрузки Rн 4 Ом Входное напряжение Uвх 20мВ Сопротивление источника сигнала Rис 110 Ом...
42845. Технологический проект холодного цеха Столовой при промышленном предприятии на 210 мест 938 KB
  Общественное питание представляет собой отрасль народного хозяйства, основу которой составляют предприятия, характеризующиеся единством форм организации производства и обслуживания потребителей и различающихся по типам специализации.
42846. Разработка базы данных пациентов районной поликлиники 6.88 MB
  Описание таблиц и логической структуры базы данных. Схема данных. 29 Введение: Целью данной курсовой является создание базы данных для работников регистратуры поликлиники.
42847. Г. Маркузе и Франкфуртская социологическая школа 72.11 KB
  Среди центров и школ западной философии, которые на протяжении целых десятилетий сохраняли и до сих пор еще сохраняют заметное влияние на философию, социальную мысль всего мира, надо особо выделить так называемую франкфуртскую школу. Группа талантливых, а в политическом отношении радикально-критически настроенных философов, социологов, экономистов, историков, литераторов объединилась вокруг основанного в 1923 г. при Франкфуртском университете Института социальных исследований.