3975

Системы линейных неравенств

Лекция

Математика и математический анализ

Лекция Системы линейных неравенств Основные понятия Системы линейных неравенств применяются для решения различных математических задач. Системой линейных неравенств из m с n неизвестными x1 ,x2 ,...

Русский

2012-11-10

331.41 KB

62 чел.

Лекция 27

Глава 3. Системы линейных неравенств

3.1. Основные понятия

Системы линейных неравенств применяются для решения различных математических задач.

Системой линейных неравенств из m с n неизвестными x1 ,x2 , ,xn называется

система соотношений вида

a11 x1

a12 x 2

 a1n x n

b1 ,

a 21 x1

a 22 x 2

 a2n xn

b2 ,



a m1 x1 a m 2 x 2  a mn x n bm ,

где числа aij , i 1,2,  , m, i 1,2,  , n

называются коэффициентами системы, числа

bi , i 1,2, , m - свободными членами. Если bi 0, i 1,2,, m , то система линейных

неравенств называется однородной.

Решением системы линейных неравенств называется такая последовательность

вещественных чисел

j все

1 , 2 , , n , для которой после замены каждого x j на

неравенства системы оказываются верными числовыми неравенствами:

ai 1 1

 ain n

ai 2 2

1,2 , , m.

bi , i

Если система линейных неравенств имеет хотя бы одно решение, она называется

разрешимой, а если не имеет ни одного решения неразрешимой.

Две системы линейных неравенств называются эквивалентными, или

равносильными, если любое решение одной из них является решением и для другой.

Другими словами, множество решений одной системы совпадает с множеством решений

другой. При установлении эквивалентности двух систем линейных неравенств обычно

используются общие свойства неравенств для вещественных чисел.

В системе неравенств могут быть так же неравенства со знаком :

a1 x1

a2 x2

 an xn

b.

Такие неравенства, умножив на -1, изменим знак неравенства на противоположный:

a1 x1

a2 x2

 an xn

b.

Следовательно, системы линейных неравенств с разными знаками неравенств, всегда

можно свести к системам одного знака неравенства.

Вместе с системами линейных уравнений и системами линейных неравенств

рассматривают также системы, содержащие как линейные уравнения, так и линейные

неравенства. Уравнение

a1 x1

a2 x2

 an xn

b

можно заменить двумя неравенствами:

a1 x1 a2 x2  an xn

a1 x1

a2 x2  a n xn

b,

b.

Таким образом, любая система линейных соотношений, состоящая из уравнений и

неравенств, может быть сведена к системе линейных неравенств одного знака.


Для систем линейных неравенств с двумя и с тремя неизвестными можно дать

геометрическую интерпретацию.

Рассмотрим сначала одно линейное неравенство с двумя неизвестными, которое

запишем в виде (а и b одновременно не равны 0):

ax by c 0 .

Возьмем плоскость с фиксированной прямоугольной декартовой системой

координат. Если х, у - координаты точки на этой плоскости, то данное неравенство

определяет на плоскости некоторое множество точек, координаты которых удовлетворяют

этому неравенству. Нетрудно выяснить, каково это множество точек.

Рассмотрим уравнение:

ax+ by+ c = 0.

В случае b

0 запишем его в виде:

a

c

,h

.

b

b

Как известно, в рассматриваемом случае уравнение определяет на плоскости

некоторую прямую, не параллельную оси Оу.

В случае b > 0 исходное неравенство можно записать в виде

y

kx h , k

y

kx h,

и, значит, точки плоскости, определяемые этим неравенством, лежат по одну сторону от

указанной прямой («ниже» этой прямой) и на самой прямой (рис.1).

Y

y=kx+b

O

y< kx+b

X

Рис. 1

В случае b < 0, записав исходное неравенство в виде

y

kx h ,

мы видим, что и на этот раз все точки, определяемые им, лежат по одну сторону от

соответствующей прямой («выше» этой прямой) и на ней (рис.2).


Y

y< kx+b

y=kx+b

O

X

Рис. 2

Пусть b = 0. Тогда неравенство запишется в виде:

c

.

a

Уравнение х=h определяет на плоскости некоторую прямую, параллельную оси Оу.

При h=0 это будет сама ось Оу. Поэтому наше неравенство определяет множество точек

плоскости, лежащих по одну сторону от этой прямой: или «слева» от нее, или «справа

(включая каждый раз и точки самой этой прямой) (рис. 3).

h или x

x

Y

h, h

x<h

x>h

O

X

x=h

Рис. 3

Таким образом, неравенство

ax by c

0

определяет на плоскости одну из двух полуплоскостей, определяемых прямой с

уравнением ах+by+с=0, т. е. множество точек, лежащих по одну сторону от этой прямой и

на самой прямой.

Рассмотрим теперь систему линейных неравенств с двумя неизвестными:

a1 x b1 y c1

a 2 x b2 y c 2

0,

0,



a m x bm y c m 0.


Множество точек плоскости, определяемых этой системой, состоит из тех точек,

координаты которых удовлетворяют этой системе. Значит, это множество есть

пересечение тех полуплоскостей, которые определяются неравенствами данной системы.

Нетрудно видеть, что это множество является многоугольной выпуклой областью на

плоскости (выпуклость означает, что вместе с любыми двумя точками из этого множества

все точки отрезка, соединяющего их, тоже лежат в этом множестве). При помощи

соответствующей системы линейных неравенств, можно получить

выпуклый

многоугольник, выпуклую неограниченную область, луч, отрезок, точку или пустое

множество.

Аналогичные рассуждения могут быть проведены и для систем линейных

неравенств с тремя неизвестными. В этом случае речь пошла бы о выпуклых

многогранных областях в пространстве.

►Пример 1.

При помощи системы линейных неравенств зададим треугольник с вершинами в

точках, заданных своими координатами: A(-2, 0), В(1, 3), С (4, 0) (рис. 4). Запишем

уравнения прямых, на которых лежат стороны треугольника:

AB: x – y + 2 = 0, BC: x + y – 4 = 0, AC: y = 0

и изобразим их на плоскости.

Определим полуплоскость относительно прямой AB, в которой расположен

треугольник. Для этого в уравнение этой прямой x – y + 2 = 0 подставим координаты

точки O(0;0) , получим верное числовое неравенство 2 0. Следовательно, и координаты

любой точки полуплоскости, расположенной «ниже» прямой AB, удовлетворяют

неравенству x – y + 2 0. Подобным образом получаем и другие неравенства. В итоге

система неравенств, определяющая треугольник ABC, имеет вид:

x

x

y 2

y 4

у

0,

0,

0.

Y

B(1;3)

A(-2;0)

O

C(4;0)

Рис. 4

X


►Пример 2.

Система неравенств

x

y 3

x

0,

y 3

x 2y

0,

0

определяет на плоскости луч (рис. 5).

Y

x-y+3=0

x+2y=0

O

X

Рис. 5

►Пример 3.

Многогранная область, определяемая системой линейных неравенств

x z 1 0,

x 0,

y 0,

y 2,

z 0.

представляет собой треугольную призму (рис. 6).


Z

1

O

2

Y

1

X

Рис. 6

3.2. Решение систем линейных неравенств

Между системами линейных неравенств и системами линейных уравнений

устанавливается следующее соотношение.

Произвольной системе т линейных неравенств с п неизвестными:

a11 x1

a12 x 2

 a1n x n

b1 ,

a 21 x1

a 22 x 2

 a2n xn

b2 ,

  

a m1 x1 a m 2 x 2  a mn x n bm

сопоставим систему т линейных уравнений с п + т неизвестными:

a11 x1

a12 x 2

 a1n x n

a 21 x1

a 22 x 2

 a2n xn

xn

b1 ,

1

xn

2

b2 ,



a m1 x1 a m 2 x 2  a mn x n

x n m bm .

Теорема. Если 1 , 2 , , n , n 1 , n 2 , , n m есть решение указанной системы

линейных уравнений и n 1 0 , n 2 0 , , n m 0 , то 1 , 2 , , n

решение

исходной системы линейных неравенств.

При этом всякое решение системы линейных неравенств может быть получено

указанным образом.

Доказательство.

1) Если

ai 2 2  ain n

2) Пусть теперь (

неравенств, т. е.

1

,

2

n i

ai 2 2  ain n

ai1 1

то

ai1 1

bi i

,,

n

bi , n i

0,

1,2 , ,m

) есть какое-нибудь решение системы линейных


ai1 1

ai 2 2  ain n

bi i

1,2 , ,m

Обозначая

n i

bi

ai 2 2  ain n

ai1 1

получаем, что

1 , 2 , , n , n 1 , n 2 , , n m

системы линейных уравнений.

0

является решением построенной

►Пример 4. Решить систему линейных неравенств

2 x1

x2

x1

1,

x2

0.

Запишем соответствующую систему линейных уравнений:

2 x1

x2

x3

x1

1,

x2

0,

x1

1 x3

x4 ,

x2

добавив в уравнения неизвестные x3

x4

1 x3

2 x4 ,

0, x 4

0.

Находим общее решение этой системы:

где x3 0, x 4 0 .

Отсюда получаем общий вид решений исходной системы линейных неравенств:

x1 1 p q, x2 1 p 2q, p 0, q 0 .

►Пример 5. Решить систему линейных неравенств

2 x1

x2

4 x1

1,

2 x2

4.

Преобразуем систему неравенств к одному знаку неравенств:

2 x1

x2

2 x1

1,

x2

2.

Запишем соответствующую систему линейных уравнений:

2 x1

x2

2 x1

добавив в уравнения неизвестные x3

x3

x2

0, x 4

1,

x4

2,

0.

1 . Значит, эта система

Решая систему методом Гаусса, получим уравнение x3 x 4

уравнений не имеет решения с условием x3 0, x 4 0 .

Следовательно, исходная система линейных неравенств не имеет решения.


►Пример 6. При помощи системы линейных неравенств задать треугольник с вершинами

в точках A(3;1), В(0;4), С (5;5).

Запишем уравнения прямых, на которых лежат стороны треугольника:

AB: x + y -4 = 0, BC: x -5 y +20 = 0, AC: 2x -y = 5.

Тогда система неравенств, определяющая треугольник ABC, имеет вид:

x y 4 0,

x 5 y 20 0,

у

2x

5.

Преобразуем систему неравенств к виду, удобному для решеня:

x y 4,

x 5 y 20,

у

2x

5.

Запишем соответствующую систему линейных уравнений:

x

y

x1

x 5y

2x

где x1

0, x2

0, x3

x2

4,

20,

у x 3 5.

0.

Общее решение этой системы:

x

y

x1

где p

где 6

0, q 0 .

Если учесть условие x1

1

p

3

2

q

3

0, p

0, q

1

p

9

2

5

p

9

1

6

p

3

5

5

q,

9

1

q,

9

2

q,

3

0 , то решение исходной системы неравенств имеет вид:

1

5

x 5

p

q,

9

9

2

1

y 5

p

q,

9

9

0.


3.2. Задачи для самостоятельной работы

В следующих задачах изобразить множества заданные системами неравенств.

3 x1 5 x 2 15,

3 x1 4 x 2 12,

3.1. x1 2 x 2 3,

3.2. 2 x1 3 x 2 6,

x1 x 2

1.

2 x1 x 2

2.

x1

4 x2

3 0,

3.3. x1

3x2

4

x1

4.

3.5.

x2

x1 2 x 2 10,

x1 3x 2 30,

5 x1 4 x 2 40,

8 x1 10 x 2 80,

0, x 2

x2

3.8.

x1

0, x 2

3 x1

3.10.

0.

x2

9

0.

x2

0,

0,

20,

2 x1 3 x 2 12,

2 x1 4 x 2 16,

x1

60,

x1 x 2 30,

x1 3 x 2 75,

x1

2 x1

0.

3 x1

3

3 x1 6 x 2 12,

3.6. x1 2 x 2 4,

x1 x 2 1.

4.

x1

3.9.

3.4.

2 x2

x2

0,

2 x1 x 2 2 0,

2 x1 x 2 2,

x1

3.7.

3 x1

0, x 2

5x2

0.

600 ,

5 x1 8 x 2 720 ,

x1 x 2 100 ,

x1

0, x 2

0.

В следующих задачах найти решения систем неравенств.

x1 2 x 2 6,

3.11. 9 x1 4 x 2 56,

3x1 5 x 2 4.

3x1

3.12.

3.13. 5 x1

5 x1

x1

x2

2 x2

2,

10,

2 x2

10.

x2

3.15. 6 x1 7 x 2 42,

2 x1 3x2 6,

x1

3 x1

3.14. x1

x1

3,

0, x 2

0.

x1

3.16.

1,

x1 3x2 13,

x1 4 x 2 9,

2 x1

x1

x2

x2

9.

2 x 2 3 0,

x 2 9 0,

x2

2 x2

9

0.

4,

2 x1 x 2

3 x1 8 x 2

6,

24

x1

0.

0, x 2


3.17.

x1 2 x 2 10,

x1 3x 2 30,

5 x1 4 x 2 40,

8 x1 10 x 2 80,

x1

0, x 2

2 x1

3.18.

x1 2 x 2 4,

5 x1 2 x 2 10,

3.19.

4 x1 3 x 2 12,

7 x1 4 x 2 20.

x1

3.20.

20,

2 x1 3 x 2 12,

2 x1 4 x 2 16,

x1

0.

x2

0, x 2

0.

2 x2

1,

5 x1 2 x 2

4 x1 3 x 2

10,

12,

x1

0, x 2

0.



 

А также другие работы, которые могут Вас заинтересовать

65277. Підвищення зносостійкості деталей наплавленням економолегованого титановмісного залізовуглецевого сплаву 609.5 KB
  Створення абразивостійкого сплаву шляхом застосування такої технології та компонентів які разом з ефективністю надання необхідних властивостей матеріалу не призводили б до суттєвого підвищення вартості є актуальною задачею.
65278. Математичне моделювання гідродинаміки двофазового потоку в умовах безперервного віброекстрагування 16.53 MB
  Розроблення нової високоефективної екстракційної апаратури на основі використання низькочастотних механічних коливань в повній мірі віддзеркалює один із основних актуальних напрямів удосконалення виробничої бази переробних галузей промисловості.
65279. ТЕХНОЛОГІЯ БІСКВІТНИХ І ПІСОЧНИХ ВИРОБІВ ФУНКЦІОНАЛЬНОГО ПРИЗНАЧЕННЯ 2.2 MB
  Зниження якості життя окремої людини та індексу здоров'я нації в цілому при значному порушенні харчового статусу населення обумовлює необхідність створення функціональних продуктів харчування. Здоров'я населення на 70% залежить від способу життя, найважливішим чинником якого є харчування.
65280. Метод визначення втомного пошкодження обшивки фюзеляжу при ресурсних випробуваннях літака з використанням фрактальних моделей деформаційного рельєфу 14.58 MB
  Одним з інструментальних методів діагностики втомного пошкодження авіаційних конструкцій виготовлених з плакованих алюмінієвих сплавів є неруйнівний комп’ютеризований оптичний метод який базується на визначенні параметру...
65281. Оптимізація азотного живлення інтенсивних насаджень груші на вегетативних підщепах в зрошуваних умовах півдня України 326 KB
  Мета оптимізація азотного живлення інтенсивних насаджень груші при зрошенні за рахунок покращення поживного режиму чорнозему південного шляхом установлення оптимальних доз строків та способів внесення азотних добрив для ефективнішого використання азоту рослинами підвищення врожаю...
65282. Удосконалення електрогідравлічних установок з ємнісними накопичувачами енергії для забезпечення їх багатофункціональності 200.5 KB
  Метою досліджень є створення енергетичних установок і комплексів для здійснення електрогідравлічних процесів, що забезпечують ефективну та високопродуктивну роботу в різних галузях промисловості.
65283. Наукові основи об’єктивного цифрового визначення та стабілізації параметрів технологічних процесів рулонних друкарських машин 413.5 KB
  Науково-технічні розробки останнього десятиліття розширили теоретичні і прикладні аспекти способів друкування книжково-журнальної, рекламної та етикетко-пакувальної продукції. Але, не дивлячись на прогрес у проектуванні...
65285. НАУКОВІ ОСНОВИ ЕКОЛОГІЧНО ОЩАДНИХ ТЕХНОЛОГІЙ І ТЕХНІЧНИХ ЗАСОБІВ ДЛЯ ВНЕСЕННЯ РІДКИХ ДОБРИВ ТА ХІМЗАХИСТУ РОСЛИН 1.5 MB
  Стосовно ґрунтових препаратів таким методом є стрічкове внутрішньоґрунтове внесення. Таким чином розробка екологічно ощадних технологій і технічних засобів для внесення рідких добрив та хімзахисту рослин є актуальною науковоприкладною проблемою...