39809

Уравнение динамики АСР

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Уравнение динамики АСР. АСР в установившемся режиме или статическом режиме работе при появлении внешнего возмущающего воздействия или регулирующего воздействия переходит в динамический режим работы который заканчивается новым установившимся режимом или прежним. ibi постоянные коэффициенты определяющие АСР и ОУ. Динамический режим работы АСР.

Русский

2013-10-08

301.5 KB

9 чел.

Лекция 5.

Уравнение динамики АСР.

АСР в установившемся режиме или статическом режиме работе при появлении внешнего возмущающего воздействия или регулирующего воздействия переходит в динамический режим работы, который заканчивается новым установившимся режимом или прежним. Переход от одного режима работы к другому называют переходным. Изучение динамики движения системы регулирования, то есть изучение переходного процесса, является важнейшей задачей, как на стадии проектирования новых систем, так и при настройке и эксплуатации уже действующих.

Движение системы происходит во времени и в общем случае при известной идеализации описывается линейным неоднородным (с правой частью) дифференциальным уравнением n-го порядка:

(1)

y=y(t) – регулируемая величина (искомая),

x=x(t) – регулирующее воздействие (под действием которого система выходит из равновесного состояния).

ai,bi – постоянные коэффициенты, определяющие АСР и ОУ.

Решать дифференциальное уравнение вида (1) при известных начальных условиях принято операторным методом. В операторном методе каждой функции времени f(t) ставится в соответствие F(p). Переход от f(t) к F(p) осуществляется с помощью прямого преобразования Лапласа. f(t) – функция времени, оригинал, F(p) – изображение.

.

f(t) – должна быть определена t0, иметь нулевые начальные условия и интегрируема на участке [0;+). Операторный метод позволяет свести операцию дифференцирования к умножению, а операцию интегрирования – к делению.

Таким образом, с помощью операторного метода от дифференциального уравнения переходят к алгебраическому. Затем находят решения и из них при помощи обратного преобразования получают решения заданного дифференциального уравнения.

.

Запишем уравнение (1) в операторной форме:

Передаточной функцией системы регулирования или ее отдельного элемента (звена) называют отношение изображения искомой функции к изображению воздействия (возмущения).

.

Имея W элемента или системы и зная входное воздействие, можно найти выходной сигнал. Строится изображение входного сигнала x(p) , умножается на передаточную функцию и получается изображение выходного сигнала. Затем получается оригинал выходного сигнала. Передаточную функцию нельзя определить экспериментально, в отличие от передаточного коэффициента.

Динамический режим работы АСР.

Это основной режим, в котором находятся реальные АСР. Динамика значит - движение, а динамический или переходный режим – это движение АСР от одного устойчивого состояния к другому.

Исследование движения АСР под действием внешних воздействий, задающих и возмущающих, составляет основной вопрос динамики регулирования.

Типовые воздействия.

При исследовании или анализе поведения систем, необходимо рассматривать какие- либо воздействия на систему, то есть знать оригинал входного сигнала. В ТАУ в качестве типовых входных воздействий принят ряд сигналов.

  1.  Единичный скачок.

 (37)

разновидности:  

Наиболее распространённое воздействие в АСР. Оно очень легко реализуется (включение напряжения, резкое открытие заслонки или клапана) резким изменением задающего воздействия. Любой сигнал может быть представлен в виде суммы единичных сигналов различной амплитуды и с различным запаздыванием.

  1.  Единичный начальный импульс или дельта функция.

(38)

Любой сигнал можно представить, как сумму единичных начальных импульсов различной амплитуды и длительности. На практике этот сигнал реализуется ударным возмущением (удар нагрузки на валу, ток короткого замыкания генератора).

3.Входной синусоидальный сигнал.

(39)

Реальный сигнал может быть представлен в виде ряда Фурье:

Динамические характеристики АСР.

Динамические характеристики получаются, как реакции АСР на рассмотренные выше типовые входные воздействия.

1. Реакция элемента или системы на 1 ступеньку, называется переходной характеристикой элемента или системы.

2. Реакция на единичный импульс δ(t), называется импульсной переходной характеристикой или функцией веса.

Для сравнения различных переходных процессов введены показатели качества переходного процесса.

Различают три вида реакции на ступенчатый сигнал: монотонный (наилучший), апериодический, колебательный (для некоторых систем недопустим).

Показатели качества:

Время регулирования. В статической системе регулируемый параметр достигает заданного значения за бесконечное  время, на практике оперируют конечными значениями времени регулирования, которое определяется как время, за которое рассогласование достигает определённого значения и не превышает его в последствии, то есть .

обычно принимают 5%, но для точных систем управления она может быть и меньше. Иногда в качестве зоны берётся зона нечувствительности АСР (особенно для релейных систем).

Перерегулирование: ,%. Для большинства АСР , но есть объекты не допускающие перерегулирования.

Колебательность: количество min или max за время регулирования.

  1.  Частотные характеристики.

Реакция на SIN сигнал.

- фаза выходного сигнала для инерционных элементов <0.

Коэффициент передачи определяется:

(40)

где А=А21 – комплексный коэффициент передачи – показывает, насколько изменится амплитуда входного сигнала на выходе и сдвиг фаз между ними. Комплексный коэффициент передачи характеризует динамику элемента при 1 фиксированной частоте, а реальный сигнал- гамма гармонических сигналов с частотами в общем случае от 0 до , поэтому, чтобы описать динамику элемента необходимо знать комплексный коэффициент передачи для всего диапазона частот (от 0 до ).

Необходимо вспомнить способы представления sin- ых сигналов.

- нормальное представление.

Можно также представить в виде вектора на комплексной плоскости с помощью преобразования Эйлера:

Частотная функция, описывающая динамику процесса называется: амплитудо-фазо-частотная функция.

.

,

где P(w) – вещественная частотная функция, Q(w) – мнимая частотная функция.

Пример:

Геометрическое место точек концов векторов комплексно функции представленные на плоскости называется годографом.

- амплитуда частотной функции,

- фаза частотной функции.

Логарифмические характеристики.

Для полного и наглядного представления во всем диапазоне частот характеристики строятся в логарифмическом масштабе.

ЛАЧХ:

A()

0.01

0.1

1

10

100

1000

L()

-40

-20

0

20

40

60

Строится ЛАЧХ следующим образом:

Для расчётов используется асимптотическая ЛАЧХ – ломанная из отрезков прямых, аппроксимирующая истинную ЛАЧХ. Возникающая погрешность меньше или равна 5%, а это значит, что она удовлетворяет требованиям точности.

Частоты, при которых сопрягаются различные участки ломаной называются частотами сопряжения.

ЛФЧХ: угол отклонения в градусах или радианах, а частота в логарифмическом масштабе, что позволяет сжать график.

Структурная схема.

Графическое изображение АСР с обозначением всех связей, где каждый элемент представлен динамической характеристикой. Такой характеристикой может быть передаточная функция W(р), переходная или импульсная переходная характеристика или частотные характеристики.

Структурная схема простейшей АСР:

где W1(p) – переходная функция регулятора, W2(p) – п.ф. исполнительного механизма, W3(p) – п.ф. объекта управления, W4(p) – п.ф. чувствительного элемента.

Для расчёта всей АСР в целом необходимо найти эквивалентную переходную функцию Wэкв(p) с помощью эквивалентных преобразований. Выполняемые при этом действия полностью аналогичны нахождению эквивалентного коэффициента передачи. - при последовательном соединении звеньев,

- при охвате ООС

- при параллельном соединении звеньев.


 

А также другие работы, которые могут Вас заинтересовать

24441. Преобразование Фурье и его основные свойства 157.5 KB
  Большинство ОМЭВМ представляет собой Гарвардскую архитектуру хранение программных кодов и данных происходит в раздельных областях памяти. Объем ОЗУ памяти даны меньше объема ПЗУ память программ. При выполнении прмы процессор осуществляет выбоку из памяти команд данных и запись результатов при этом он адресуется к ячейкам памяти по их номерам. Ячейки памяти имеют свой номер адрес памяти а совокупность адресов памяти состовляют адресное пространство.
24442. Преобразование Лапласа, Представление дискретной информации и способы ее отображения 93.5 KB
  Система команд однокристальной ЭВМ и способы адресации операндов Команда процессора код определяющий действие устройства при выполнении заданных операций фций. Способ адресации способ указания положения данных над которыми производятся операция адресация операндов либо способ определения точки перехода в командах передачи управления адресация переходов. При формировании команды один и тот же код операции может использоваться при различных способах адресации Пример на системе команд MCS51. Элементы в квадратных скобках могут...
24443. Параллельный и последовательный порты ЭВМ. Теорема Котельникова 279 KB
  Последовательный порт может работать в 4х режимах: В режиме 0 информация передается и принимается через ввод приемника RxD. В режиме 1 информация передается через выход передатчика TxD и принимается через вход приемника RxD В режиме 2 информация передается через выход передатTxD принимается через вход приемника RxD. Частота приема и передачи в режиме 2 задается программно и может быть равна fBQ 32 или fno 64. Режим 3 полностью идентичен режиму 2 за исключением параметров частоты приема и передачи которые в режиме 3 задаются Т С 1.
24444. Энтропия источника информации 179 KB
  Энтропия источника информации. Источник информации можно представить в виде случайной величины X принимающей одно из конечного числа возможных значений {1 2 ј m} с вероятностью pi pi вероятность того что X = i.Теорема Шеннона Если имеется источник информации с энтропией Нх и канал связи с пропускной способностью С то если С HX то всегда можно закодировать достаточно длинное сообщение таким образом что оно будет передано без задержек. Если же напротив С HX то передача информации без задержек невозможна.
24445. Технология сжатия информационных данных (Алгоритмы Шеннона-Фано, Хаффмана) 182 KB
  Выполнив выше сказанное для всех символов получим: C = 00 2 бита A = 0100 4 бита D = 0101 4 бита F = 011 3 бита B = 10 2 бита E = 11 2 бита Каждый символ изначально представлялся 8ю битами один байт и так как мы уменьшили число битов необходимых для представления каждого символа мы следовательно уменьшили размер выходного файла. Из этих комбинаций лишь 2 по длиннее равны 8 битам. Поэтому для дискретного управления в реальном масштабе времени наличие в системе команд операций...
24446. Цепи Маркова. Стационарное распределение вероятностей цепи Маркова 101.5 KB
  Марковские процессы это процессы которые в будущем и прошлом при фиксированном настоящем являются независимыми. Рассмотрим некоторый вероятностный процесс . Пространство X называют пространством состояний а его элементы называются состоянием процесса. Считаем что пространство состояний X состоит из неотрицательных целых чисел из этого следует что процесс дискретный.
24447. Цепь Маркова с непрерывным временем 240 KB
  Простейшая операция сложения используется в АЛУ для инкрементирования содержимого регистров продвижения регистрауказателя данных и автоматического вычисления следующего адреса РПП. В АЛУ выполняется 51 различная операция пересылки или преобразования этих данных. Так как используется 11 режимов адресации 7 для данных и 4 для адресов то путем комбинирования операция режим адресации базовое число команд 111 расширяется до 255 из 256 возможных при однобайтном коде операции. Память программ и память данных размещенные на кристалле МК5...
24448. Сущность метода статистических испытаний 193.5 KB
  Формат команды во многом определяется способом адресации операнда находящего в оперативной памяти длиной используемого непосредственного операнда а также наличием и длиной смещения используемого при относительных режимах адресации. Непосредственная адресация предполагает что операнд занимает одно из полей команды и следовательно выбирается из оперативной памяти одновременно с ней. Прямая адресация предполагает что эффективный адрес является частью команды. Так как ЭА состоит из 16 разрядов то и соответствующее поле команды должно...
24449. Пуассоновский процесс 218.5 KB
  б операционное устройство как преобразователь дискретной информации. Запоминающим устройством накопителем называется устройство предназначенное для хранения множества элементов информации и снабжённое средствами селекции обеспечивающего запись и или чтение заданного элемента информации. Устройством вводавывода называется устройство предназначенное для чтения информации с носителя и или записи информации на носитель путём преобразования электрических сигналов в сигналы иной физической природы т. передача информации из одной среды в...